Category Archives: Technology

Growing Up Einstein:

 A Look at the Controversies Surrounding Gravity

Newton’s Universal Law of Gravity has been the impetus of many significant advances in physics. Similarly, Einstein’s theories of relativity enabled the creation of a school of science, cosmology, and maintains a symbiotic relationship with the study of quantum mechanics, though quantum gravity proves elusive (“Relativity and the quantum,” n.d.). Einstein’s General Relativity (GR) theory is the accepted standard for modeling gravity, today. Until recently, anyone refuting Einstein was sure to find his or her claim subject to acute skepticism, if not complete dismissal. In fact, controversial claims have been made, and until as late as 2004, one unfortunate observation was made:

Supporters of the big bang theory may retort that these theories do not explain every cosmological observation. But that is scarcely surprising, as their development has been severely hampered by a complete lack of funding. Indeed, such questions and alternatives cannot even now be freely discussed and examined. An open exchange of ideas is lacking in most mainstream conferences. Whereas Richard Feynman could say that “science is the culture of doubt”, in cosmology today doubt and dissent are not tolerated, and young scientists learn to remain silent if they have something negative to say about the standard big bang model. Those who doubt the big bang fear that saying so will cost them their funding. (Alternative Cosmology Group, 2004, para. 5)

Two variant theories have surfaced with promise of becoming accepted, or at least considered: Modified Newtonian Dynamics (MOND) and Tensor-Vector-Scalar (TeVeS). The question remains, will these theories be heard?


Isaac Newton first introduced the concept of gravity in 1686 in his work Principia. Expanding on the ballistics work of Galileo and using the Pythagorean theorem, Newton explained the known observations of the moon’s orbital path around the Earth (Fowler, 2008). This work “led Newton to his famous inverse square law: the force of gravitational attraction between two bodies decreases with increasing distance between them as the inverse of the square of that distance, so if the distance is doubled, the force is down by a factor of four” (“The Moon is Falling,” para. 9) and, hence, extrapolated to the creation of Newton’s Universal Law of Gravity.

Newton’s Universal Law of Gravity states that the force of gravity between two objects is equal to the product of the masses of the two objects divided by the square of the distance between the objects multiplied by the universal gravitational constant. This is a very simplistic explanation of gravity, and though it proves true when considering objects closely related, it fails to explain the observed effects of gravity at both extremely long and intimately short distances (Skordis, 2009 ; Stacey & Tuck, 1981).

Einstein’s work on space-time in the early 1900’s was at odds with the classical notion of gravity. He spent some time reconsidering this impact and devised his GR theory. GR, though expanding the Newtonian law of gravity with the concept of curvatures in space-time to predict the existence of gravitational waves, gravitational lensing, and black holes, according to Skordis (2009), is still lacking and fails to explain the observed distribution of matter throughout the universe. GR requires mathematical adjustment to remain valid in some circumstances, introducing obscure concepts, such as dark energy and dark matter. The combination of dark matter and dark energy is told to comprise more than 95% of all mass in the universe (Filippini, 2005). Yet, this matter has never been observed. This situation presented cosmologists with an opportunity to devise a more complete and elegant solution to explain the effects of gravity. The problem: acceptance.

The Controversy, Itself

“There are significant discrepancies between the visible masses of galaxies and clusters of galaxies and their masses as inferred from Newtonian dynamics” (Sagi & Bekenstein, 2008). Proponents of GR and Newtonian Dynamics present the existence of dark matter and dark energy to provide explanations for these discrepancies. Some researchers did not accept this as a viable solution to the missing mass problem. Instead, they struggled to find a better solution. As earlier researchers presented their work, they were met with arrogance and contempt (Alternative Cosmology Group, 2004). This attitude has dissuaded others from questioning the conventional theories, at least without a sound theory that could hold up to scrutiny.

Modified Newtonian Dynamics (MOND) was probably one of the first contemporary proposals to identify a respectable solution to the quandaries of GR. Though, as Bekenstein and Sanders (2005) describes, it answered the questions of perigalactic gas clouds and some galaxy clustering without the need for dark matter, it failed with its incompatibility to the laws of conservation. The aquadratic lagrangian (AQUAL) theory emerged from MOND to address these shortcomings, though it, too, was flawed as it was a nonrelativistic solution to the problem. Relativistic AQUAL (RAQUAL) was introduced soon after. Being a relativistic version of AQUAL, RAQUAL does not negate AQUAL, and therefore, stays true to the MONDian theory, also. RAQUAL is not without its problems, however, as “it permits superluminal propagation of φ waves (B&M). And it is unable to give an account of gravitational lensing in agreement with the basic observation that lensing by galaxy clusters is anomalously strong compared to what was to be expected in view of their galaxies and gas content” (p. 24). Another problem is that RAQUAL is not covariant and actually “weaken[s] gravitational lensing, rather than enhancing it as intended” (p. 24). The introduction of a constant vector field to the equation both provides a solution and suggests the approach of the Tensor-Vector-Scalar (TeVeS) covariant field theory.

TeVeS is actually a combination of MOND, Newtonian, and Einstein’s GR, with two metrics to interact with the fields in the theory. “Many aspects of TeVeS have been investigated extensively, proving the theory to be faring quite well in view of the huge challenges it was designed to meet” (Sagi, 2009). TeVeS may provide ground-breaking advances in cosmology, and perhaps, in quantum physics.

The controversy surrounding TeVeS and its sound consideration probably stems from the shortcomings of its precursors. This is not a respectable position. Looking through the history of science, rarely is there a major step forward without, first, smaller and error-laden advances. Any new theory that answers real observations should be given an opportunity to mature with greater study and more observational constraint.

Science and Society

This controversy has been raging for the better part of a century. Not until recently has there been a proposed solution that both agrees with GR and Newtonian Dynamics at the same time that it furthers the understanding of gravity where GR fails. Many of the major technological advances in the last century were a direct result of Einstein’s breakthrough contributions to Newtonian physics. One would think that more people would be paying attention, but the general media has not. Perhaps, many of the reporters feel this issue is outside of the realm and scope of their readership’s ability to understand, or maybe, the media just does not realize the import of such discoveries. Unfortunately (or, perhaps, fortunately), the discussion remains technical, equation-laden, and lackluster, helping to keep the influences of the ignorant out of the discussion. Regardless, the limited mainstream coverage limits the controversy to the experts of astrophysics and cosmology.

Society should certainly pay more attention to science; it would serve society well to be an active participant in contemporary scientific discourse. A strong social commitment to science is needed in order to progress responsibly, and though society can prove to be collectively ignorant, it is no marker of overall intelligence. Can society give back to science?

What is (Not) Science?

In a recent Time magazine article (Cray, 2006), Francis Collins, in a debate with Richard Dawkins, attempts to justify his rigor as a scientist with his spiritual beliefs as a Christian. Science is knowledge. Science is neither philosophy nor religion. In the quest for understanding, cosmology is seeking answers to the beginning and hints of the end of time, the self-stated realm of religion. As of this writing, quantum physicists are sifting through anti-matter to glimpse the elusive God particle.

Scientific breakthroughs, though insightful, do not provide testimony against the existence of a Creator, just as uncovering a religious artifact does not negate the latest scientific conclusion. While religion strives to provide an explanation of the beginning of mankind, science is willing to explore the physical boundaries that religion is said to transcend. It would do both camps well to isolate themselves from one another. Cosmology is fraught with opportunity to infringe on religion, especially in the study of gravity. The separation of virtue from knowledge, while allowing them to coexist, is paramount. As we increase our understanding of the macro- and microscopic world around us, especially in the fields of cosmology and quantum physics, the sciences need to maintain a focused and unbiased search for knowledge. This discretion, alone, will limit many of these controversies from arising.

A Changing of the Guard

It appears from the amount of emerging research that there is a renewed vigor among cosmologists to rectify the problems of GR. With the amount of research being submitted to scholarly journals, detractors can no longer deny the need to seriously examine the potential solutions. Additionally, perhaps, the pool of experts have changed, and the conventional mindset has changed with them. Regardless, it appears as though a dearth of research is being completed in the study of universal gravity, and the research is, now, being considered as valid.

This controversy illustrates the need for scientists and field experts to approach emerging solutions with an open mind, though remaining vigilant and skeptical. As a society, we cannot afford having a potential scientific breakthrough remain secreted by virtue of conventionalism, alone. Our knowledge is too important for us to fail in nurturing it.


Alternative Cosmology Group. (2004, May 22). Open letter on cosmology. Retrieved from

Bekenstein, J. D. & Sanders, R. H. (2005). A primer to relativistic MOND theory. In G. Mamon, F. Combes, C. Deffayet & B. Fort (Eds.), EAS Publications Series (Vol. 20, pp. 225-230). doi:10.1051/eas:2006075

Cray, D. (2006, November 5). God vs. science. Time. Retrieved from

Filippini, J. (2005, August). Why dark matter? Cosmology Group, University of California, Berkley. Retrieved from Why_Dark_Matter.html

Fowler, M. (2008, November 13). Isaac Newton. Physics Department, University of Virginia. Retrieved from

Relativity and the quantum. (n.d.). Einstein-Online. Retrieved from

Sagi, E. (2009, August 15). Preferred frame parameters in the tensor-vector-scalar theory of gravity and its generalization. Physical Review D, 80(4), 44032-44047. doi:10.1103/PhysRevD.80.044032

Sagi, E. & Bekenstein, J. D. (2008, February 1). Black holes in the TeVeS theory of gravity and their thermodynamics. Physical Review D, 77, 024010-024021. doi:10.1103/PhysRevD.77.024010

Skordis, C. (2009, March 21). The Tensor-Vector-Scalar theory and its cosmology. Class.Quant.Grav., 26, 143001-143044. doi:10.1088/0264-9381/26/14/143001

Stacey, F. D. & Tuck, G. J. (1981, July 16). Geophysical evidence for non-newtonian gravity. Nature, 292, 230-232. doi:10.1038/292230a0

 Examining Gravitational Claims Through Shermer

Michael Shermer (2002) outlines 25 fallacies of thought that can influence how investigators approach their research and interpret the outcomes. These fallacies can be used to help us to understand where the data ends and the human factor begins. With new claims challenging the scope and breadth of Einstein’s general and special theories of relativity, it would be appropriate to examine these claims with a couple of Shermer’s fallacies.

The furtherance of cosmology and astrophysics is heavily reliant on our understanding of gravity, as it plays an integral role in the movements of and relationships between celestial bodies. As of this writing, it is the revolutionary theories of Newton and Einstein that guide the sciences. Though these theories do well to explain gravity within our solar system, as technological growth enables us to study more of the cosmos, we find that the matter distribution throughout the universe becomes problematic to the accepted theory. This has been referred to as the “missing mass problem” (Skordis, 2009, p. 2). To answer this problem, researchers have adopted and tested gravitational theories which build on Newton’s and Einstein’s theories. Unfortunately for these researchers, the scientific community is skeptical about any claims aimed at possibly discrediting the long-held conventions of gravitational theory, especially in light of the scientific growth that has resulted over the years. This creates a scientific controversy which will eventually be settled by continuing to form and adapt theories and testing their mettle against the scrutiny of scientists (Herstein, 2009).

Claims need to be accepted as valid or significant before the scientific community will consider them as competitive with current science. Certainly, there is no time to argue against every claim made, so only those claims that have the characteristics of good science should be entertained. This is where Shermer’s fallacies can be of value. Shermer attempts to provide a tool with which to measure the inadequacies of research and researcher. With his fallacies of thought, he attempts to reveal the pseudo-science among the good science. Two of his fallacies are useful to measure the claims against Einstein.

“Theory influences observations” (Shermer, 2002, p. 46). This truism certainly impacts astronomical and cosmological research. The study of universal gravity is difficult because we observe the effects from Earth. It is impossible to directly study the gravity of planets and stars from here. We must form theories and use calculations to approximate and legitimize our observations. These calculations must, then, have predictive value. If not, the theory is not valid (or, has limitations). With the distance from our subjects, we are forced to speculate about the observations, limited by our understanding of the physics involved.

“Equipment constructs results” (Shermer, 2002, p. 47). This statement has probably never been more true. We are truly limited by our location, as mentioned previously, and rely on remote data collection when studying the universe. To add, we are studying effects throughout time. Given two separate sets of data collected at the same time, the actual events observed could have a difference in age of millions of years. The distances of the various bodies are directly proportional to the age of the observation. This creates unique issues that we have never had to face studying our own solar system, as the differences, locally, are only hours at most.

It is important for scientists to consider all of the viable options when reaching a consensus, but it is just as important that the scientific community does not become overburdened by a multitude of spurious claims resulting from flawed, misguided, and unfounded research. Shermer (2002) provides an apparatus to immediately identify suspect logic.


Herstein, G. (2009, July 23). What does a real scientific controversy look like? [Web log message]. Retrieved from what_does_real_scientific_controversy_look

Shermer, M. (2002). Why people believe weird things. New York: Henry Holt and Company.

Skordis, C. (2009, March 21). The Tensor-Vector-Scalar theory and its cosmology. Manuscript submitted for publication. Retrieved from

Examples of Pseudoscientific Claims on the Internet

The advent of the internet gives rise to the proliferation of information. At first glance, this is a great medium of our time. The unfortunate truth is that there is a less-than-desirable side to the internet. One of the main achievements of the internet is the ability of everyone to publish their own ideas or collections of others ideas on websites. Sometimes, these websites do not portray the truth of the matter. Using standards set forth by Shermer (2002), I will examine two websites, which make extraordinary claims, for clues to the validity of their claims, or lack thereof. Though, the websites mentioned herein were specifically chosen as pseudoscientific, I will search for the modicum of truth that is sure to be inherent in all claims of this nature.

Paul Ingraham, a registered massage therapist in Vancouver, Canada, claims that stretching prior to exercise is all but useless (n.d.). For $14.95, he will show you why. In his web-based article, formatted to appear as a peer-reviewed and published manuscript, Ingraham starts by citing an article in the same commercial magazine that pays him for submissions. Below this are two quotes from reader feedback. This is hardly scientific reference. The article moves on to cover the subject material in the authors words while continuing to cite “plentiful research” (para. 6), of which many conclude limited findings, and “evidence” (para. 7), which he immediately qualifies as “at least a really convincing physiological rationale” (para. 7).

Shermer’s (2002) fallacies can be used to identify this website as less credible than the author intends. Shermer’s first fallacy, “theory influences observation” (p. 46) is an obvious consideration. Ingraham is a massage therapist and his view is certainly biased by his occupation. A quick glance at the provided reference list will show a collection of literature selected to support Ingraham’s (n.d.) claim. Shermer’s fourth fallacy, “anecdotes do not make a science” (p. 48), can be applied as Ingraham uses anecdotes throughout his article to support his claim. Finally, the whole format of Ingraham’s self-published article, suggesting that his work was peer-reviewed and published in an academic journal, brings to light Shermer’s fifth fallacy, “scientific language does not make a science” (p. 49). With three of Shermer’s 25 fallacies shown to be pertinent considerations, Ingraham must be viewed with skepticism at the very least.

A website published by the Discovery Institute, Center for Science and Culture (n.d.), makes the claim that the year 2012 marks the end of the world, at least as we know it. This website uses strong language and bold statements throughout. This would certainly be an application of Shermer’s (2002) sixth fallacy, “bold statements do not make claims true” (p. 49). Additionally, this website uses references to religions and philosophies, tying them with coincidental occurrences throughout time as a means of justification for the claim. This alone creates skepticism using almost all of Shermer’s fallacies of thought.

Can stretching be detrimental to the athlete? Might there be better ways to prepare for strenuous activities? Certainly. It is unfortunate that this author does not take the time to do appropriate research. Further, it could be stated that his representation of the facts is fraudulent. Although he may have some standing in his claim, he does a disservice to himself by the methods he employs to make a convincing argument (Ingraham, n.d.).

The same cannot be said for the 2012 prophecies (Discovery Institute, Center for Science and Culture, n.d.). These prophecies lack proof until the prophecies are fulfilled. There are just no scientific means available to observe and study this prophecy as it has yet to occur, and though science may be able to explain whatever catastrophe might happen that day, the prophecy itself is beyond the realm of science.


Discovery Institute, Center for Science and Culture. (n.d.). Explaining the science of Intelligent Design. Retrieved from

Kehne, J. (2006). December 21 2012, The official Website for 122112 Information. Retrieved October 10, 2009, from

Shermer, M. (2002). Why people believe weird things. New York: Henry Holt and Company.

Ingraham, P. (n.d.). Stretching for trigger points. Retrieved from

 Arguing With Einstein: It’s All Relative

In choosing a contemporary scientific controversy, I wanted to use certain selection criteria. Herstein (2009) outlines six “quick and dirty rules… for separating real from faux controversies” (para. 6). First, the controversy must involve alternatives that are scientifically valid. This rule keeps non-scientific claims and beliefs, such as religious views, from consideration. Second, the controversy must take place among peer-reviewed researchers. Though the media is useful in publicizing important findings, it is important that the controversy does not reside wholly in the realm of the media. This would, indeed, seem to invalidate some of the claims. Finally, combining two of Herstein’s rules, there should not be any significant financial motivations or overt conspiracy theories surrounding the controversy which would serve only to confuse the issue. For this paper, it would be difficult to sort through financial records of every person who has a potential interest in one of the alternatives. This position would lend to dismissing the controversies of certain industries, such as pharmaceuticals, energy, and national defense. Herstein has offered a contemporary scientific controversy which I will investigate for my final project.

From Copernicus to Galileo, then in 1686, Sir Isaac Newton developed his theory of universal gravitation. In 1905, Albert Einstein developed his relativity theories, improving on the Newtonian theory. These and other discoveries and theories have led to the conscript of the Standard Model of cosmology. As late as this year, research (Sagi, 2009) has been published which may build on these theories even further. This is not a popular venture among scientists. One observation is unfortunate:

Supporters of the big bang theory may retort that these theories do not explain every cosmological observation. But that is scarcely surprising, as their development has been severely hampered by a complete lack of funding. Indeed, such questions and alternatives cannot even now be freely discussed and examined. An open exchange of ideas is lacking in most mainstream conferences. Whereas Richard Feynman could say that “science is the culture of doubt”, in cosmology today doubt and dissent are not tolerated, and young scientists learn to remain silent if they have something negative to say about the standard big bang model. Those who doubt the big bang fear that saying so will cost them their funding. (Alternative Cosmology Group, 2004, para. 5)

If scientists fear ridicule and professional isolation for experimenting with potential alternatives to the Standard Model, this certainly constitutes a scientific controversy worth exploring. Further, adherence to a model that is not as complete as possible serves to discredit science in the view of the society. Science needs to be truthful to society. The social responsibility of science dictates the ethical approach to the dissemination of information to the public to educate and proffer wisdom, not to mislead and misinform; otherwise, the dark energy Einstein seeks can be found among his profession, keeping his equations true.


Alternative Cosmology Group. (2004, May 22). Open Letter on Cosmology. Retrieved from

Herstein, G. (2009, July 23). What does a real scientific controversy look like? [Web log message]. Retrieved from what_does_real_scientific_controversy_look

Sagi, E. (2009, August 15). Preferred frame parameters in the tensor-vector-scalar theory of gravity and its generalization. Physical Review D, 80(4), 44032-44047. doi:10.1103/PhysRevD.80.044032

 Social Responsibility in Science

The context of science seems to be challenged by public opinion and alternatives offered by pseudo-science. Though it is important to understand how public opinion is swayed, it is even more detrimental to recognize responsibility in garnering that opinion. One of the mainstays in science is to confirm findings before releasing the information to the public. In past, this has been done through private communications within the scientific community with the goal of garnering professional support of the findings. Peer dissonance is often communicated through further research disproving claims and theories, but peers are sometimes forced to publicly question these claims when the initial investigators have already publicized their initial findings.

The premature promotion of radical ideas only serves to excite the public. As Beckwith and Huang (2005) describe, “Although the scientists with an interest in influencing social policy often go public because of their strong belief in the conclusions… scientists who see the flaws… are much less likely to confront the issues in [public]” (p. 1479). This is a common tactic among pseudo-scientists, as those who lack credibility with their peers need to have public opinion in their favor, lest their finances dissipate. Beckwith and Huang go on to show that many scientists prefer to enjoy a public disconnect unless it furthers an agenda.

In 1945, Nagasake and Hiroshima burned as the world looked on in both amazement and disbelief. Since World War II, the demand in the United States for more social responsibility among the scientific community has grown. “The explosions over Hiroshima and Nagasaki… not only made society more aware of the importance of science, they made scientists more aware of their responsibility to society” (Badash, 2005, p. 148). Knowledge comes with responsibility, and though this responsibility is often cited when problems arise, it should be conveyed throughout the scientific process.

“It would be inappropriate to refrain from doing research in case it might possibly be abused or be applied irresponsibly” (Drenth, 1999, p. 237). Science needs to move forward. The purpose of science is to uncover knowledge in areas yet unexplored and unexplained. It is only reasonable to assume that science will uncover information that could be used in a manner contradictory to the original intent; otherwise, all research would be stymied if any of the possible outcomes could be used with maligned intent. Investigators should challenge themselves to remain unbiased, ethical, and honest throughout every phase of research, including the release of the conclusions, and they should take care not to assume further responsibility than is thrust upon them.

All schools of science should promote ethical and responsible research. As it is difficult to understand the potential impact of science in the future, investigators should attempt to minimize the negative impacts through careful design of their studies. Politicizing research should be left to politicians who have been thoroughly educated by the researchers.


Badash, L. (2005). American Physicists, Nuclear Weapons in World War II, and Social Responsibility. Physics in Perspective, 7, 138-149. doi:10.1007/s00016-003-0215-6

Beckwith, J., & Huang, F. (2005). Should we make a fuss: A case for social responsibility in science. Nature Biotechnology, 23(12), 1479-1480.

Drenth, P. J. D. (1999). Prometheus chained: Social and ethical constraints on Psychology. European Psychologist, 4(4), 233-239.


Many times, throughout the history of science, pseudosciences have been found to have some underlying correlation. Further directed study turns what was one pseudoscience into real science. An example of this is aspirin.

The basic form of aspirin, salicin, “was used for centuries earlier [than 460 B.C.] in European folk medicine” (Gibson, n.d., para. 2) in the form of willow leaves and bark to treat pain and swelling. This practice continued over the centuries until:

“According to “From A Miracle Drug” written by Sophie Jourdier for the Royal Society of Chemistry: ‘It was not long before the active ingredient in willow bark was isolated; in 1828, Johann Buchner, professor of pharmacy at the University of Munich, isolated a tiny amount of bitter tasting yellow, needle-like crystals, which he called salicin.'” (“History of Aspirin”, n.d., para. 4)

For the next 75 years, proto-aspirin was developed into what is now commonly referred to as aspirin (acetylsalicilic acid), and though aspirin is commonly prescribed for all sorts of pain, there is no medical research done at this time to show that aspirin has any more impact other than reducing pain. Not until 1988 was there much research showing the benefits of aspirin to treat heart attack victims (Fuster, Dyken, Vokonas, & Hennekens, 1993; Mosca, 2008), though it was commonly prescribed for reducing the associated pain. It is now generally understood in the medical community that aspirin serves a vital purpose in limiting prostiglandin production, thereby limiting the effect of clotting in the coronary arteries (Fuster et al., 1993). Essentially, aspirin helps to stop a heart attack from getting worse.

Aspirin has undergone a transformation from the pseudoscience of folk medicine to a valued addition in the general pharmacopeia for the treatment of heart attacks. Consider the difference between aspirin for heart health and the claims of acai berry for weight loss. There has been recent discussion about the health effects of acai berry which has prompted researchers to analyze the nutritional composition of the berry (Schauss et al., 2006). Though the discussion has nothing related to weight loss, some have made the claim that acai is useful for this purpose and cite research that does not further this claim. This is detrimental to the furtherance of acai as a significant source of nutrition and possible medicinal role for improving age-related cognition deficits (Willis, Shukitt-Hale, Joseph, 2009).


Fuster, V., Dyken, M. L., Vokonas, P. S., & Hennekens, C. (1993). Aspirin as a therapeutic agent in cardiovascular disease. Special Writing Group. Circulation, 87, 659-675.

Gibson, A. C. (n.d.). Oh willow, don’t weep. Economic Botany. Retrieved from

Mosca, L. (2008). Aspirin chemoprevention: One size does not fit all. Circulation, 117, 2844-2846.

History of Aspirin. (n.d.). About.Com: Inventors. Retrieved from

Schauss, A. G., Wu, X., Prior, R. L., Ou, B., Patel, D., Huang, D., & Kababick, J. P. (2006). Phytochemical and nutrient composition of the freeze-dried Amazonian palm berry, Euterpe oleraceae Mart. (acai). J. Agric. Food Chem., 54, 8598−8603

Willis, L. M., Shukitt-Hale, B., Joseph, J. A. (2009). Recent advances in berry supplementation and age-related cognitive decline. [Special commentary][Abstract]. Current Opinion in Clinical Nutrition & Metabolic Care, 12(1), 91-94. Abstract retrieved from

 It’s Alive! It’s Alive!:

The Problematic Stereotype of Scientists as Mad Doctors, Evil Geniuses, and Crazy Professors

Pryor and Bright (2006) describe occupational stereotyping as a result of the thought processes of efficient memorization using “induction, deduction, and abduction” ( 2). Further oversimplification and ignorant bias can lead to a dogmatic misrepresentation, which can further lead to a prejudiced view of the subject. Pryor and Bright refer to racism as a negative example of stereotyping; however, they continue that “stereotyping represents a summary of our experience of reality, as a form of knowledge, it also has a positive dimension” ( 3). As I read this description, I am reminded of the movie Back to the Future (Canton et al., 1985) in which, for me, Christopher Lloyd’s rendition of Dr. Emmett Brown embodies the stereotypical scientist. With his wild, unkempt white hair, absent-mindedness, and pure genius, “Doc Brown” provides a stereotypical characterization of the quirky and crazy professor. I have always held a realistic view of the world and do not readily subscribe to dogma, but I can see how portrayals of scientists such as the Doc Brown character can influence perceptions of the field. Though stereotypes such as these are not completely accurate portrayals of the occupation, they are not without base or merit.

Contributing factors of the occupational stereotype of scientists could possibly be from the public’s perceptions of science from the sensational coverage of the media of the time. When technology advances in light of the contributions of scientists, the technology usually gets the media coverage. Conversely, when the contributions are that of a seemingly quirky or sinister scientist, especially if the relevance of the technology is suspect, the media usually focuses on the scientist. Two particular cases demonstrate this phenomena particularly well. Sergei S. Brukhonenko (Konstantinov & Alexi-Meskishvili, 2000) was a major contributor to the medical advancement of temporal extracorporeal circulation, or heart-lung bypass, though the media chose to concentrate on the sensational image of a living decapitated dog head that was able to respond to stimuli and swallow food though separated from its body. The second example (Oddee, 2008) is the comprehensive effort of Luigi Galvani, Giovanni Aldini, J. Conrad Dippel, and Andrew Ure in exploring the relationship of electricity and nerve fibers, and though the experiments that each have performed were regarded as horrific parlor tricks or attempts at “playing god”, the importance of the resulting technology is not lost on cybernetic researchers responsible for improving the usefulness of prosthetic devices.

Stereotyping is a useful convention of society and a useful developmental tool to aid in learning and memorization, identification and warning, or for purely dramatic effect such as when cynically augmented for comedic relief. Though useful, care must be used when making associations of generalizations and bias. Unfortunately, the convention is frequently misused leading to an association of negative traits to unrealistic markers such as skin color, heritage, age, and gender. Additionally, the public perception of science is important when considering issues such as financial matters. Funding can be extremely difficult to secure if a project is ridiculed or rejected in the public forum. This difficulty can lead to dampening of research and a slowing of technological growth. Further, “these (social) images of occupations have a major impact on the development of occupational aspirations” (Pryor & Bright, 2006, 18). This identity bias could lead a bright potential scientist away from the occupational field of science. The implications can never be known.


Canton, N. (Producer), Gale, B. (Producer/Writer), Kennedy, K. (Executive Producer), Marshall, F. (Executive Producer), Spielberg, S. (Executive Producer), & Zemeckis, R. (Writer/Director). (1985). Back to the Future [Motion Picture]. United States: Universal Pictures.

Konstantinov, I.E., & Alexi-Meskishvili, V. V. (2000). Sergei S. Brukhonenko: the development of the first heart-lung machine for total body perfusion. Annals of Thoracic Surgery, 69(3), 962-966.

Oddee. (2008, October 13). Top 10 mad scientists in history. Retrieved from

Pryor, R. G. L., & Bright, J. E. H. (2006). Occupational Stereotypes. Encyclopedia of Career Development. Retrieved from

An Essay on the Value of Television on Society

Television plays a critical role in providing information to its viewers in a timely manner, though this responsibility could be detrimental if the format of delivery is not in line with the needs of the viewers. There are many questions and theories regarding the usefulness or appropriateness of television in American society today. A research review (Huston, et al., 1992) of television watching habits in regards to violence, sexuality and health shows that television program choices are as formative for adults as they are adolescents, though younger children may be spared from this effect due to their “insufficient emotional and cognitive capacities to comprehend the message.” With this in mind, some people feel that television broadcasts should be well-regulated and censored to a level that society finds appropriate (Hoffner, et al., 1999), and though much of television is, in fact, regulated to some degree, Anderson (1997) found that commercials which air during family-centered broadcasting contained violence which may not be suitable for all ages. In addition to violence, many programs aired today contain sociopolitical biases that threaten the very message meant to be conveyed. In addition to content, expertise is called into question as local and national news outlets are viewed with a sense of authority, when in fact they may not be. A recent survey (Wilson, 2008) of weathercasters showed that in 2002 only 8% of stations employed a science or environment reporter. Many weathercasters do not have the scientific background in order to accurately forecast severe weather, yet they serve as the authoritative source for this information. These are not symptoms common only to network television broadcasting but are prominent in all media, including print and radio.

In order for the media to maintain its credibility, it must take the responsibility of broadcasting seriously. Television broadcasters must maintain an air of unbiased, expert reporting interested in delivering fact and opposing viewpoints if necessary. Broadcast outlets must also take on the responsibility of the content of each program keeping in mind the intended audience. There is a social contract between viewers and broadcasters, and though I am not one to suggest government censorship, responsible self-censorship by each media outlet may be ethical and appropriate to promote good habits and healthy lifestyles.

With society’s reliance on television to provide entertainment and information, the programs and information offered can certainly alter society’s perceptions of acceptability and necessity within our culture. With rights comes responsibility. We enjoy a certain freedom of our press, but when that freedom is without responsibility, misinformation is promulgated to the masses having dire consequences on society. As an example, the media’s reliance on violence for profits has greatly diminished our society’s abhorrence of such. This coupled with poor and inaccurate reporting on gun violence has led to an unhealthy promotion of guns to solve the most minuscule of problems (Omaar, 2007). Essentially, the media created a self-fulfilling prophecy. Looking at society today, this has effectively removed guns from the hands of lawful citizens and placed them with criminals. Many politicians are to blame for their ignorance on this matter, but television is to blame for providing these politicians the education of ignorance. Television can shape society. What shape do we want to be in?


Anderson, C. (1997). Violence in Television Commercials During Nonviolent Programming: The 1996 Major League Baseball Playoffs. JAMA, 278(13), 1045-1046.

Hoffner, C., Buchanan, M., Anderson, J. D., Hubbs, L. A., Kamigaki, S. K., Kowalczyk, L., et al. (1999). Support for censorship of television violence: The role of the third-person effect and news exposure. Communication Research, 26(6), 726-742. DOI: 10.1177/009365099026006004

Huston, A. C., Donnerstein, E., Fairchild, H., Feshbach, N. D., Katz, P.A., Murray, J. P., et al. (1992). The role of television in American society. Lincoln, NE: University of Nebraska Press.

Omaar, R. (3 September 2007). Why our children carry guns. New Statesman, 137(4860), 20. AN: 26417804

Wilson, K. (2008). Television weathercasters as station scientists. Bulletin of the American Meteorological Society, 89(12), 1926-1927

Science as a Social Construction

In order to understand the differences and similarities of social versus cultural construction and to apply this to the field of science, we should first investigate the terms and understand the definitions of each. At center, we have “science”. Merriam-Webster (2009) defines science as “knowledge or a system of knowledge covering general truths [which can be] tested” in specific manner. For ease of transition, I will keep it simply as “knowledge”. Next is construction. Construction is defined, in this context, as “the act or result of construing, interpreting, or explaining”. Thus far, we have an act of interpreting or explaining knowledge, but is this construed socially, culturally or both? Hall (1994) delineates social and cultural abstracts, “[Culture] is threaded through all social practices, and is the sum of their interrelationship.” (p. 523) More generally speaking, society builds culture. As interrelated as these terms are, one can only posit that if a construct is social, then it must also be cultural. The inverse should also hold true.

Science, in one form or another, has been around since mankind perfected the first thing that was perfected. I do not feel that it is important to know what it was that we first perfected, but that we eventually perfected some kind of act or skill and sought to learn more. This want for knowledge, I will say would be the birth of science. From this time forward, I would argue that science was deeply social and cultural. The welfare of societies depended on the science of the time. Until the Age of Enlightenment, it did not matter if the knowledge was fully understood. “Enlightenment thinkers placed a great premium on the discovery of truth through the observation of nature, rather than through the study of authoritative sources, such as Aristotle and the Bible” (“Age of Enlightenment,” 2009). This was a time that mysticism and magic were set aside for experimentation and the scientific method. It is my opinion that, after the Age of Enlightenment, science became less socially or culturally oriented, though the impact was no less dramatic. It is this separation of emotion, the suspension of belief, that drives a true search for scientific fact.


Age of Enlightenment. (2009). In Microsoft Encarta Online Encyclopedia. Retrieved September 10, 2009, from

Construction. (2009). In Merriam-Webster Online Dictionary. Retrieved September 10, 2009, from

Hall, S. (1994). Cultural studies: Two paradigms. In N. B. Dirks, G. Eley & S. B. Ortner (Eds.), Culture/power/history: a reader in contemporary social theory (pp. 520-538). Princeton, NJ: Princeton University Press.

Science. (2009). In Merriam-Webster Online Dictionary. Retrieved September 10, 2009, from

Revisiting My Goals

When I applied to Walden University, there were some choices that I needed make in regards to which program I would enroll in. I relied on my past experience and some of my current goals to direct me to the Bachelor of Science degree in Computer Information Systems (BSCIS) with a concentration in Information Systems Security (ISS), a process which truly motivates me. Revisiting my goals and lending them power to help navigate the world of academia, I needed to ensure that these goals still held true. The first assignment in the Introduction to Information Systems class afforded me the opportunity to do just that, while this assignment will allow me to review my goals once again.

My affinity towards positive social change (Schadone, 2009) is unwaivering, as is my desire to achieve a position in the field of disaster management. I do feel, however, that my chosen degree program is ill-prescribed to prepare me for such ambitions. Though there has been a great incentive to involve the engineering sciences into public policy administration (Connolly, 2009), my experience with the BSCIS degree, even with the ISS concentration, leads me to believe that the curriculum does not satisfy my current needs or goals. I do believe that a career in Information Systems Security would provide an opportunity to reach many of my goals, but other academic directions would provide a more solid foundation for me to build upon.

As of this writing, I have decided to research other avenues of academia which might be better suited to providing the core educational opportunities that would benefit me the most. I have decided that the B.S. in Health Studies with a concentration in Health Administration would be a better fit at this time. I hope to use this degree to propel me forward into an opportunity to earn an MPH with a concentration in Emergency Management and, ultimately, a Ph. D. in the same.

As the H1N1 influenza virus reminds us all about the 1918 “Spanish Flu,” there is an undertone of personal responsibility and preparedness in the event of a pandemic (Bornstein & Trapp, 2009), of which conditions are favorable. I plan to take personal responsibility in this and other potential disasters to position myself as an expert in the field helping to promote plans and policies to mitigate and respond effectively to such incidences. Though, I am versed in the computer sciences, I feel that my position as a health official would be better utilized in these times of crisis. Perhaps one day in the future I will return my focus on computing, but until then, my social conscience and sense of community seem to be my only defining factors.


Bornstein, J., & Trapp, J. (2009, June). Pandemic Preparedness: Ensuring Our Best Are Ready to Respond. IAEM Bulletin, 26(6), pp. 6, 14. Retrieved August 22, 2009, from

Connolly, J. (2008, September). Bridging the gap between engineering and public policy: A closer look at the WISE program. Mechanical Advantage, 19. Retrieved August 22, 2009, from

Schadone, M. F. (2009). Information Systems and Me: My Professional and Career Goals. Minneapolis, MN: Walden University.