Category Archives: Academia

 Arguing With Einstein: It’s All Relative

In choosing a contemporary scientific controversy, I wanted to use certain selection criteria. Herstein (2009) outlines six “quick and dirty rules… for separating real from faux controversies” (para. 6). First, the controversy must involve alternatives that are scientifically valid. This rule keeps non-scientific claims and beliefs, such as religious views, from consideration. Second, the controversy must take place among peer-reviewed researchers. Though the media is useful in publicizing important findings, it is important that the controversy does not reside wholly in the realm of the media. This would, indeed, seem to invalidate some of the claims. Finally, combining two of Herstein’s rules, there should not be any significant financial motivations or overt conspiracy theories surrounding the controversy which would serve only to confuse the issue. For this paper, it would be difficult to sort through financial records of every person who has a potential interest in one of the alternatives. This position would lend to dismissing the controversies of certain industries, such as pharmaceuticals, energy, and national defense. Herstein has offered a contemporary scientific controversy which I will investigate for my final project.

From Copernicus to Galileo, then in 1686, Sir Isaac Newton developed his theory of universal gravitation. In 1905, Albert Einstein developed his relativity theories, improving on the Newtonian theory. These and other discoveries and theories have led to the conscript of the Standard Model of cosmology. As late as this year, research (Sagi, 2009) has been published which may build on these theories even further. This is not a popular venture among scientists. One observation is unfortunate:

Supporters of the big bang theory may retort that these theories do not explain every cosmological observation. But that is scarcely surprising, as their development has been severely hampered by a complete lack of funding. Indeed, such questions and alternatives cannot even now be freely discussed and examined. An open exchange of ideas is lacking in most mainstream conferences. Whereas Richard Feynman could say that “science is the culture of doubt”, in cosmology today doubt and dissent are not tolerated, and young scientists learn to remain silent if they have something negative to say about the standard big bang model. Those who doubt the big bang fear that saying so will cost them their funding. (Alternative Cosmology Group, 2004, para. 5)

If scientists fear ridicule and professional isolation for experimenting with potential alternatives to the Standard Model, this certainly constitutes a scientific controversy worth exploring. Further, adherence to a model that is not as complete as possible serves to discredit science in the view of the society. Science needs to be truthful to society. The social responsibility of science dictates the ethical approach to the dissemination of information to the public to educate and proffer wisdom, not to mislead and misinform; otherwise, the dark energy Einstein seeks can be found among his profession, keeping his equations true.


Alternative Cosmology Group. (2004, May 22). Open Letter on Cosmology. Retrieved from

Herstein, G. (2009, July 23). What does a real scientific controversy look like? [Web log message]. Retrieved from what_does_real_scientific_controversy_look

Sagi, E. (2009, August 15). Preferred frame parameters in the tensor-vector-scalar theory of gravity and its generalization. Physical Review D, 80(4), 44032-44047. doi:10.1103/PhysRevD.80.044032

 Social Responsibility in Science

The context of science seems to be challenged by public opinion and alternatives offered by pseudo-science. Though it is important to understand how public opinion is swayed, it is even more detrimental to recognize responsibility in garnering that opinion. One of the mainstays in science is to confirm findings before releasing the information to the public. In past, this has been done through private communications within the scientific community with the goal of garnering professional support of the findings. Peer dissonance is often communicated through further research disproving claims and theories, but peers are sometimes forced to publicly question these claims when the initial investigators have already publicized their initial findings.

The premature promotion of radical ideas only serves to excite the public. As Beckwith and Huang (2005) describe, “Although the scientists with an interest in influencing social policy often go public because of their strong belief in the conclusions… scientists who see the flaws… are much less likely to confront the issues in [public]” (p. 1479). This is a common tactic among pseudo-scientists, as those who lack credibility with their peers need to have public opinion in their favor, lest their finances dissipate. Beckwith and Huang go on to show that many scientists prefer to enjoy a public disconnect unless it furthers an agenda.

In 1945, Nagasake and Hiroshima burned as the world looked on in both amazement and disbelief. Since World War II, the demand in the United States for more social responsibility among the scientific community has grown. “The explosions over Hiroshima and Nagasaki… not only made society more aware of the importance of science, they made scientists more aware of their responsibility to society” (Badash, 2005, p. 148). Knowledge comes with responsibility, and though this responsibility is often cited when problems arise, it should be conveyed throughout the scientific process.

“It would be inappropriate to refrain from doing research in case it might possibly be abused or be applied irresponsibly” (Drenth, 1999, p. 237). Science needs to move forward. The purpose of science is to uncover knowledge in areas yet unexplored and unexplained. It is only reasonable to assume that science will uncover information that could be used in a manner contradictory to the original intent; otherwise, all research would be stymied if any of the possible outcomes could be used with maligned intent. Investigators should challenge themselves to remain unbiased, ethical, and honest throughout every phase of research, including the release of the conclusions, and they should take care not to assume further responsibility than is thrust upon them.

All schools of science should promote ethical and responsible research. As it is difficult to understand the potential impact of science in the future, investigators should attempt to minimize the negative impacts through careful design of their studies. Politicizing research should be left to politicians who have been thoroughly educated by the researchers.


Badash, L. (2005). American Physicists, Nuclear Weapons in World War II, and Social Responsibility. Physics in Perspective, 7, 138-149. doi:10.1007/s00016-003-0215-6

Beckwith, J., & Huang, F. (2005). Should we make a fuss: A case for social responsibility in science. Nature Biotechnology, 23(12), 1479-1480.

Drenth, P. J. D. (1999). Prometheus chained: Social and ethical constraints on Psychology. European Psychologist, 4(4), 233-239.


Many times, throughout the history of science, pseudosciences have been found to have some underlying correlation. Further directed study turns what was one pseudoscience into real science. An example of this is aspirin.

The basic form of aspirin, salicin, “was used for centuries earlier [than 460 B.C.] in European folk medicine” (Gibson, n.d., para. 2) in the form of willow leaves and bark to treat pain and swelling. This practice continued over the centuries until:

“According to “From A Miracle Drug” written by Sophie Jourdier for the Royal Society of Chemistry: ‘It was not long before the active ingredient in willow bark was isolated; in 1828, Johann Buchner, professor of pharmacy at the University of Munich, isolated a tiny amount of bitter tasting yellow, needle-like crystals, which he called salicin.'” (“History of Aspirin”, n.d., para. 4)

For the next 75 years, proto-aspirin was developed into what is now commonly referred to as aspirin (acetylsalicilic acid), and though aspirin is commonly prescribed for all sorts of pain, there is no medical research done at this time to show that aspirin has any more impact other than reducing pain. Not until 1988 was there much research showing the benefits of aspirin to treat heart attack victims (Fuster, Dyken, Vokonas, & Hennekens, 1993; Mosca, 2008), though it was commonly prescribed for reducing the associated pain. It is now generally understood in the medical community that aspirin serves a vital purpose in limiting prostiglandin production, thereby limiting the effect of clotting in the coronary arteries (Fuster et al., 1993). Essentially, aspirin helps to stop a heart attack from getting worse.

Aspirin has undergone a transformation from the pseudoscience of folk medicine to a valued addition in the general pharmacopeia for the treatment of heart attacks. Consider the difference between aspirin for heart health and the claims of acai berry for weight loss. There has been recent discussion about the health effects of acai berry which has prompted researchers to analyze the nutritional composition of the berry (Schauss et al., 2006). Though the discussion has nothing related to weight loss, some have made the claim that acai is useful for this purpose and cite research that does not further this claim. This is detrimental to the furtherance of acai as a significant source of nutrition and possible medicinal role for improving age-related cognition deficits (Willis, Shukitt-Hale, Joseph, 2009).


Fuster, V., Dyken, M. L., Vokonas, P. S., & Hennekens, C. (1993). Aspirin as a therapeutic agent in cardiovascular disease. Special Writing Group. Circulation, 87, 659-675.

Gibson, A. C. (n.d.). Oh willow, don’t weep. Economic Botany. Retrieved from

Mosca, L. (2008). Aspirin chemoprevention: One size does not fit all. Circulation, 117, 2844-2846.

History of Aspirin. (n.d.). About.Com: Inventors. Retrieved from

Schauss, A. G., Wu, X., Prior, R. L., Ou, B., Patel, D., Huang, D., & Kababick, J. P. (2006). Phytochemical and nutrient composition of the freeze-dried Amazonian palm berry, Euterpe oleraceae Mart. (acai). J. Agric. Food Chem., 54, 8598−8603

Willis, L. M., Shukitt-Hale, B., Joseph, J. A. (2009). Recent advances in berry supplementation and age-related cognitive decline. [Special commentary][Abstract]. Current Opinion in Clinical Nutrition & Metabolic Care, 12(1), 91-94. Abstract retrieved from

 It’s Alive! It’s Alive!:

The Problematic Stereotype of Scientists as Mad Doctors, Evil Geniuses, and Crazy Professors

Pryor and Bright (2006) describe occupational stereotyping as a result of the thought processes of efficient memorization using “induction, deduction, and abduction” ( 2). Further oversimplification and ignorant bias can lead to a dogmatic misrepresentation, which can further lead to a prejudiced view of the subject. Pryor and Bright refer to racism as a negative example of stereotyping; however, they continue that “stereotyping represents a summary of our experience of reality, as a form of knowledge, it also has a positive dimension” ( 3). As I read this description, I am reminded of the movie Back to the Future (Canton et al., 1985) in which, for me, Christopher Lloyd’s rendition of Dr. Emmett Brown embodies the stereotypical scientist. With his wild, unkempt white hair, absent-mindedness, and pure genius, “Doc Brown” provides a stereotypical characterization of the quirky and crazy professor. I have always held a realistic view of the world and do not readily subscribe to dogma, but I can see how portrayals of scientists such as the Doc Brown character can influence perceptions of the field. Though stereotypes such as these are not completely accurate portrayals of the occupation, they are not without base or merit.

Contributing factors of the occupational stereotype of scientists could possibly be from the public’s perceptions of science from the sensational coverage of the media of the time. When technology advances in light of the contributions of scientists, the technology usually gets the media coverage. Conversely, when the contributions are that of a seemingly quirky or sinister scientist, especially if the relevance of the technology is suspect, the media usually focuses on the scientist. Two particular cases demonstrate this phenomena particularly well. Sergei S. Brukhonenko (Konstantinov & Alexi-Meskishvili, 2000) was a major contributor to the medical advancement of temporal extracorporeal circulation, or heart-lung bypass, though the media chose to concentrate on the sensational image of a living decapitated dog head that was able to respond to stimuli and swallow food though separated from its body. The second example (Oddee, 2008) is the comprehensive effort of Luigi Galvani, Giovanni Aldini, J. Conrad Dippel, and Andrew Ure in exploring the relationship of electricity and nerve fibers, and though the experiments that each have performed were regarded as horrific parlor tricks or attempts at “playing god”, the importance of the resulting technology is not lost on cybernetic researchers responsible for improving the usefulness of prosthetic devices.

Stereotyping is a useful convention of society and a useful developmental tool to aid in learning and memorization, identification and warning, or for purely dramatic effect such as when cynically augmented for comedic relief. Though useful, care must be used when making associations of generalizations and bias. Unfortunately, the convention is frequently misused leading to an association of negative traits to unrealistic markers such as skin color, heritage, age, and gender. Additionally, the public perception of science is important when considering issues such as financial matters. Funding can be extremely difficult to secure if a project is ridiculed or rejected in the public forum. This difficulty can lead to dampening of research and a slowing of technological growth. Further, “these (social) images of occupations have a major impact on the development of occupational aspirations” (Pryor & Bright, 2006, 18). This identity bias could lead a bright potential scientist away from the occupational field of science. The implications can never be known.


Canton, N. (Producer), Gale, B. (Producer/Writer), Kennedy, K. (Executive Producer), Marshall, F. (Executive Producer), Spielberg, S. (Executive Producer), & Zemeckis, R. (Writer/Director). (1985). Back to the Future [Motion Picture]. United States: Universal Pictures.

Konstantinov, I.E., & Alexi-Meskishvili, V. V. (2000). Sergei S. Brukhonenko: the development of the first heart-lung machine for total body perfusion. Annals of Thoracic Surgery, 69(3), 962-966.

Oddee. (2008, October 13). Top 10 mad scientists in history. Retrieved from

Pryor, R. G. L., & Bright, J. E. H. (2006). Occupational Stereotypes. Encyclopedia of Career Development. Retrieved from

Weird Science:

The Study of Unconventional Topics

Unconventional science, or fringe science, is the study of science which goes against accepted theory and, arguably, should be viewed with skepticism to ensure the lack of pseudo-science (de Jager, 1990, pp. 35-36). Research in fringe science has undoubtedly provided the greatest technological jumps that society has benefited from. Human flight, magnetic levitation, the microprocessor, and electricity were all considered fringe science, even pseudo-science, at one time. Now, they are commonly accepted. Some of today’s fringe science topics involve teleportation, time travel, free energy, cold fusion, artificial intelligence, and cloaking.

For a scientist, a whole career can be jeopardized by choosing a field of study that is looked upon with disdain by the contemporary scientific community. A scientist must truly be passionate about their work in order to survive through this. Only the lucky few will ever see their work produce meaningful results. It is for this reason that it is important to distinguish fringe science from pseudo-science. Is it possible? Only after the emergence and acceptance of the theory, can it move from fringe science to contemporary science. Failing this, it will be forever regarded as pseudo-science by its detractors. So, why would any scientist want to spend an entire career in this realm, possibly alienating themselves from their peers? Passion. With that answer, I must ask myself if there is anything in the realm of fringe science that I would be so passionate about as a scientist that I would risk a career over it.

The medical uses of nanotechnology could have a considerable impact on the whole of the human race. To imagine, as Merkle (1996) describes, microscopic robots that could enter the bloodstream and travel throughout a body in search of injury or illness, then literally fix the problem is certainly Orwellian in my eyes. Notwithstanding, a breakthrough of this magnitude would certainly be worthwhile to any scientist, the application of which would be endless and only contingent on the robot’s ability to be programmed. There would be other uses, also: automatic repairs on buildings, bridges, and vehicles, the literal programmatic building of structures, instant recycling of waste materials, etc. Though, anything that could be helpful could also be a hindrance. A group of microscopic robots that could make repairs on human tissue could also destroy it. This would be a significant military advantage in the area of remote warfare, as well as more diabolical applications. As the size of the microprocessor inversely relates to the computing power, I can imagine that the intelligence capability required of these little machines is not too far in the future.

Science fiction! Even the airplane was science fiction at one time. The helicopter, too, though I still consider the helicopter to be an abomination of physics. Almost every contemporary scientific notion was once held to skepticism. I do not think that it is wise to dismiss an idea solely on the grounds of popularity or a lack thereof. If someone has a belief, let them prove it. Once proven, let the data be duplicated by others and turned into conventional wisdom or into the trash bin, wherever it belongs.


de Jager, C. (1990). Science, fringe science, and pseudo-science. R.A.S. Quarterly Journal, 31(1), 31-45.

Merkle, R. C. (1996). Nanotechnology and medicine. Advances in Anti-aging Medicine, 1, 277-286.

Science as a Social Construction

In order to understand the differences and similarities of social versus cultural construction and to apply this to the field of science, we should first investigate the terms and understand the definitions of each. At center, we have “science”. Merriam-Webster (2009) defines science as “knowledge or a system of knowledge covering general truths [which can be] tested” in specific manner. For ease of transition, I will keep it simply as “knowledge”. Next is construction. Construction is defined, in this context, as “the act or result of construing, interpreting, or explaining”. Thus far, we have an act of interpreting or explaining knowledge, but is this construed socially, culturally or both? Hall (1994) delineates social and cultural abstracts, “[Culture] is threaded through all social practices, and is the sum of their interrelationship.” (p. 523) More generally speaking, society builds culture. As interrelated as these terms are, one can only posit that if a construct is social, then it must also be cultural. The inverse should also hold true.

Science, in one form or another, has been around since mankind perfected the first thing that was perfected. I do not feel that it is important to know what it was that we first perfected, but that we eventually perfected some kind of act or skill and sought to learn more. This want for knowledge, I will say would be the birth of science. From this time forward, I would argue that science was deeply social and cultural. The welfare of societies depended on the science of the time. Until the Age of Enlightenment, it did not matter if the knowledge was fully understood. “Enlightenment thinkers placed a great premium on the discovery of truth through the observation of nature, rather than through the study of authoritative sources, such as Aristotle and the Bible” (“Age of Enlightenment,” 2009). This was a time that mysticism and magic were set aside for experimentation and the scientific method. It is my opinion that, after the Age of Enlightenment, science became less socially or culturally oriented, though the impact was no less dramatic. It is this separation of emotion, the suspension of belief, that drives a true search for scientific fact.


Age of Enlightenment. (2009). In Microsoft Encarta Online Encyclopedia. Retrieved September 10, 2009, from

Construction. (2009). In Merriam-Webster Online Dictionary. Retrieved September 10, 2009, from

Hall, S. (1994). Cultural studies: Two paradigms. In N. B. Dirks, G. Eley & S. B. Ortner (Eds.), Culture/power/history: a reader in contemporary social theory (pp. 520-538). Princeton, NJ: Princeton University Press.

Science. (2009). In Merriam-Webster Online Dictionary. Retrieved September 10, 2009, from