Tag Archives: traffic safety

Improving Traffic Safety for Emergency Responders

The Emergency Medical Services (EMS) is an occupational field wrought with opportunities for workers to become ill, injured, or succumb to death while performing the functions of their job (Maguire, Hunting, Smith, & Levick, 2002). In the mid-1980’s, Iglewicz, Rosenman, Iglewicz, O’Leary, and Hockmeier (1984) were among the first to perform research into the occupational health of EMS workers by uncovering unhealthy carbon monoxide levels in the work area. This appears to have been the impetus for further research into uncovering some of the causes and contributing factors of illness and injury incidents, as well as safer alternatives to current work practices.

One of the more recent efforts to protect EMS workers relates to traffic-related injuries and fatalities of EMS workers while responding to calls and working on the scenes of traffic accidents. As important it is for the EMS workers to be able to get to the scene of an emergency and work without threat of injury, the safety of the community is important to consider. Solomon (1990) realized the need to improve safety in this area and recommended changing the paint color of emergency apparatus to more visible lime-green. Emergency workers were continuing to fall victim to “secondary incidents” at roadway scenes (Cumberland Valley Volunteer Firemen’s Association, 1999). An analysis of EMS worker fatalities between 1992 and 1997 reveals an occupational fatality rate that continues to exceed that of the general population (Maguire, Hunting, Smith, & Levick, 2002).

Across the pond, in the United Kingdom, efforts were also underway to improve the visibility of police vehicles by considering various paint design schemes, including the Battenburg design: alternating blocks of contrasting colour (Harrison, 2004). Harrison concluded that the half-Battenburg design showed promise as it increased visibility and recognition of police cars in the United Kingdom, and the United States National Institute of Justice was considering research on the efficacy of the Battenburg design here in the United States to promote officer safety. EMS administrations are known for paying special attention to the bandwagon, that is they frequently make changes based on inconclusive and sporadic evidence. This is the case with recent ambulance designs.

Many ambulances in the New England, as well as other parts of the country, are being designed with the half-Battenburg markings applied to the sides of the vehicles in attempts to improve the safety of EMS workers. Unfortunately, we may find that these markings might have an unintended effect of confusing other drivers and causing more problems. A recent study found that Harrison (2004) was correct in that the Battenburg design assisted British drivers in quickly identifying British police vehicles, but the “effectiveness of the ‘Battenburg’ pattern in the UK appears primarily related to its association with police vehicles in that country” (Federal Emergency Management Agency, Department of Homeland Security, 2009, p. 6) having little effect on the recognition potential of American drivers.

Perhaps with the evolving data, we can begin using an evidence-based approach at helping the EMS worker perform his or her job safely at traffic scenes.


Cumberland Valley Volunteer Firemen’s Association. (1999). Protecting Emergency Responders on the Highways: A White Paper. Emmitsburg, MD: United States Fire Administration.

Federal Emergency Management Agency, Department of Homeland Security. (2009). Emergency vehicle visibility and conspicuity study [Catalog No. FEMA FA-323]. Emmittsburg, MD: United States Fire Administration.

Harrison, P. (2004). High-conspicuity livery for police vehicles [Publication No. 14/04]. Hertfordshire, U.K.: Home Office, Police Scientific Development Branch. Retrieved from http://scienceandresearch.homeoffice.gov.uk/hosdb/publications/road-policing-publications/14-04-High-Conspicuity-Li12835.pdf

Iglewicz, R., Rosenman, K.D., Iglewicz, B., O’Leary, K., & Hockmeier, R. (1984). Elevated levels of carbon monoxide in the patient compartment of ambulances. American Journal of Public Health, 74(5).

Maguire, B.J., Hunting, K.L., Smith, G.S., and Levick, N.R. (2002). Occupational fatalities in emergency medical services: A hidden crisis. Annals of Emergency Medicine, 40(6), 625-632. doi: 10.1067/mem.2002.128681

Solomon, S.S. (1990). Lime-yellow color as related to reduction of serious fire apparatus accidents: The case for visibility in emergency vehicle accident avoidance. Journal of the American Optometric Association, 61, 827-831.