All posts by Mike Schadone

 Examining Gravitational Claims Through Shermer

Michael Shermer (2002) outlines 25 fallacies of thought that can influence how investigators approach their research and interpret the outcomes. These fallacies can be used to help us to understand where the data ends and the human factor begins. With new claims challenging the scope and breadth of Einstein’s general and special theories of relativity, it would be appropriate to examine these claims with a couple of Shermer’s fallacies.

The furtherance of cosmology and astrophysics is heavily reliant on our understanding of gravity, as it plays an integral role in the movements of and relationships between celestial bodies. As of this writing, it is the revolutionary theories of Newton and Einstein that guide the sciences. Though these theories do well to explain gravity within our solar system, as technological growth enables us to study more of the cosmos, we find that the matter distribution throughout the universe becomes problematic to the accepted theory. This has been referred to as the “missing mass problem” (Skordis, 2009, p. 2). To answer this problem, researchers have adopted and tested gravitational theories which build on Newton’s and Einstein’s theories. Unfortunately for these researchers, the scientific community is skeptical about any claims aimed at possibly discrediting the long-held conventions of gravitational theory, especially in light of the scientific growth that has resulted over the years. This creates a scientific controversy which will eventually be settled by continuing to form and adapt theories and testing their mettle against the scrutiny of scientists (Herstein, 2009).

Claims need to be accepted as valid or significant before the scientific community will consider them as competitive with current science. Certainly, there is no time to argue against every claim made, so only those claims that have the characteristics of good science should be entertained. This is where Shermer’s fallacies can be of value. Shermer attempts to provide a tool with which to measure the inadequacies of research and researcher. With his fallacies of thought, he attempts to reveal the pseudo-science among the good science. Two of his fallacies are useful to measure the claims against Einstein.

“Theory influences observations” (Shermer, 2002, p. 46). This truism certainly impacts astronomical and cosmological research. The study of universal gravity is difficult because we observe the effects from Earth. It is impossible to directly study the gravity of planets and stars from here. We must form theories and use calculations to approximate and legitimize our observations. These calculations must, then, have predictive value. If not, the theory is not valid (or, has limitations). With the distance from our subjects, we are forced to speculate about the observations, limited by our understanding of the physics involved.

“Equipment constructs results” (Shermer, 2002, p. 47). This statement has probably never been more true. We are truly limited by our location, as mentioned previously, and rely on remote data collection when studying the universe. To add, we are studying effects throughout time. Given two separate sets of data collected at the same time, the actual events observed could have a difference in age of millions of years. The distances of the various bodies are directly proportional to the age of the observation. This creates unique issues that we have never had to face studying our own solar system, as the differences, locally, are only hours at most.

It is important for scientists to consider all of the viable options when reaching a consensus, but it is just as important that the scientific community does not become overburdened by a multitude of spurious claims resulting from flawed, misguided, and unfounded research. Shermer (2002) provides an apparatus to immediately identify suspect logic.


Herstein, G. (2009, July 23). What does a real scientific controversy look like? [Web log message]. Retrieved from what_does_real_scientific_controversy_look

Shermer, M. (2002). Why people believe weird things. New York: Henry Holt and Company.

Skordis, C. (2009, March 21). The Tensor-Vector-Scalar theory and its cosmology. Manuscript submitted for publication. Retrieved from

Examples of Pseudoscientific Claims on the Internet

The advent of the internet gives rise to the proliferation of information. At first glance, this is a great medium of our time. The unfortunate truth is that there is a less-than-desirable side to the internet. One of the main achievements of the internet is the ability of everyone to publish their own ideas or collections of others ideas on websites. Sometimes, these websites do not portray the truth of the matter. Using standards set forth by Shermer (2002), I will examine two websites, which make extraordinary claims, for clues to the validity of their claims, or lack thereof. Though, the websites mentioned herein were specifically chosen as pseudoscientific, I will search for the modicum of truth that is sure to be inherent in all claims of this nature.

Paul Ingraham, a registered massage therapist in Vancouver, Canada, claims that stretching prior to exercise is all but useless (n.d.). For $14.95, he will show you why. In his web-based article, formatted to appear as a peer-reviewed and published manuscript, Ingraham starts by citing an article in the same commercial magazine that pays him for submissions. Below this are two quotes from reader feedback. This is hardly scientific reference. The article moves on to cover the subject material in the authors words while continuing to cite “plentiful research” (para. 6), of which many conclude limited findings, and “evidence” (para. 7), which he immediately qualifies as “at least a really convincing physiological rationale” (para. 7).

Shermer’s (2002) fallacies can be used to identify this website as less credible than the author intends. Shermer’s first fallacy, “theory influences observation” (p. 46) is an obvious consideration. Ingraham is a massage therapist and his view is certainly biased by his occupation. A quick glance at the provided reference list will show a collection of literature selected to support Ingraham’s (n.d.) claim. Shermer’s fourth fallacy, “anecdotes do not make a science” (p. 48), can be applied as Ingraham uses anecdotes throughout his article to support his claim. Finally, the whole format of Ingraham’s self-published article, suggesting that his work was peer-reviewed and published in an academic journal, brings to light Shermer’s fifth fallacy, “scientific language does not make a science” (p. 49). With three of Shermer’s 25 fallacies shown to be pertinent considerations, Ingraham must be viewed with skepticism at the very least.

A website published by the Discovery Institute, Center for Science and Culture (n.d.), makes the claim that the year 2012 marks the end of the world, at least as we know it. This website uses strong language and bold statements throughout. This would certainly be an application of Shermer’s (2002) sixth fallacy, “bold statements do not make claims true” (p. 49). Additionally, this website uses references to religions and philosophies, tying them with coincidental occurrences throughout time as a means of justification for the claim. This alone creates skepticism using almost all of Shermer’s fallacies of thought.

Can stretching be detrimental to the athlete? Might there be better ways to prepare for strenuous activities? Certainly. It is unfortunate that this author does not take the time to do appropriate research. Further, it could be stated that his representation of the facts is fraudulent. Although he may have some standing in his claim, he does a disservice to himself by the methods he employs to make a convincing argument (Ingraham, n.d.).

The same cannot be said for the 2012 prophecies (Discovery Institute, Center for Science and Culture, n.d.). These prophecies lack proof until the prophecies are fulfilled. There are just no scientific means available to observe and study this prophecy as it has yet to occur, and though science may be able to explain whatever catastrophe might happen that day, the prophecy itself is beyond the realm of science.


Discovery Institute, Center for Science and Culture. (n.d.). Explaining the science of Intelligent Design. Retrieved from

Kehne, J. (2006). December 21 2012, The official Website for 122112 Information. Retrieved October 10, 2009, from

Shermer, M. (2002). Why people believe weird things. New York: Henry Holt and Company.

Ingraham, P. (n.d.). Stretching for trigger points. Retrieved from

Disregarding the Second Amendment

The Socio-political Consequences and a Libertarian Solution

Americans, as citizens of the republic, have rights that transcend any government. These rights ensure the continuing operation and stability of the republic. Our founding fathers outlined these rights conspicuously after thoughtfully debating the specific wording that should be used. Though times change, these freedoms should not. Most Americans accept that with these freedoms come social responsibility, and I will delineate how this relationship can be maintained without the use of specific anti-gun legislation. The current opinions surrounding gun control range from desires to ban all privately owned firearms to disallowing any government (Federal, State, County, or municipal) from placing any controls on the citizens’ ability to own, possess, carry, control, and use firearms. On the other hand, some people are willing to accept a compromise of terms. There are socio-political consequences for each of the various levels of proposed gun control in the United States, including impacts on the U.S. Constitution and the Constitutions of the fifty States.

The anti-gun coalitions dispute the claims that crime rates soar when gun bans are put in effect, and admittedly, the correlation does nothing to prove causation, yet, a sober analysis of the matter reveals confirmation that the claim is, in fact, valid. Following the 1997 gun ban (Firearms Act, 1997), Great Britain suffered the highest crime rates in Europe, specifically domestic burglary, the forceful entering of residential premises. A Home Office report shows that violent crimes increased steadily by 26% over the next 5 years (2004). Johnston reports, “Britain has one of the worst crime rates in Europe…. It is the most burgled country in Europe, has the highest level of assaults and above average rates of car theft, robbery and pickpocketing” (2007, para. 1). In fact, the violent crime rate continues to grow 77% through 2006. Japanese crime rates increase dramatically 128% during the years 1997 to 2001, after adopting similar firearms legislation. The same phenomena was seen in Australia with robberies increasing 44% after a similar gun ban. Interestingly, the authorities in New Zealand found it difficult and cumbersome to enforce the Australian ban and they abandoned the effort. The crime rates in New Zealand decreased dramatically (robbery: 18% decrease, domestic burglary: 27% decrease). Unfortunately, after a rejuvenation of the gun ban in 2000, the report reflects an 8% overall increase in violent crimes (Home Office, 2004). Unfortunately, the research is still lacking.

Another component of the gun control debate in the United States is the consideration that the Second Amendment of the U.S. Constitution refers not to individuals, but to State and Federal sponsored militias. Though the U.S. Supreme Court (District of Columbia v. Heller, 2007) has recently ruled that the Amendment proscribes an individual right, this is not a new opinion. A search through documentation of the Constitutional Conventions (Elliot, 1836; Ford, 1888) and previous Supreme Court decisions (United States v. Cruikshank, 1876; United States v. Miller, 1939) shows a consistent viewpoint, the Second Amendment refers to an individual right to bear arms. There certainly has been some confusion regarding the interpretation of this Amendment (Miller v. Texas, 1894; United States v. Cruikshank, 1876), but most of the experts now concede the individual rights interpretation.

Proponents of gun control have also sought to ban weapons described as assault weapons. The position of The Brady Campaign to Prevent Gun Violence ( on assault weapons:

The Brady Campaign supports banning military-style semi-automatic assault weapons along with high-capacity ammunition magazines. These dangerous weapons have no sporting or civilian use. Their combat features are appropriate to military, not civilian, contexts. (n.d., Position section)

Here many gun control advocates erroneously cite United States v. Miller (1939) as limiting the civilian ownership of military-style weapons. Justice McReynolds, in his opinion, states, “Certainly it is not within judicial notice that this weapon is any part of the ordinary military equipment, or that its use could contribute to the common defense” (p. 6). This ruling is problematic. Miller and his co-defendant were not represented by counsel, and before the proceedings took place, Miller was murdered (Aultice, 1990). With these issues in mind, the opinion was based on a lack of evidence that a sawed-off shotgun could be used as ordinary military equipment. An argument could have been made that might have impacted Justice McReynolds’ opinion. During the Civil War, Confederate cavalrymen regularly employed the sawed-off shotgun against the Union cavalry, and during World War I, American soldiers in Europe used short-barreled shotguns regularly to clear trenches (, n.d.). Had this argument been offered, perhaps the opinion would have been different. As Aultice (1990) writes, “by default it is acceptable to own weapons with a ‘reasonable relationship’ to the preservation of the militia, and nothing so fits the description as those creatures of their own distorted imagination, the so-called ‘assault weapons’!” (Viewpoint section, para. 1). During debates, the proponents of gun control find themselves requiring a different argument in the face of this.

Gun control advocates ask a fairly simple, though outlandish, question: Where does it end? The gun control advocates are simply asking if there is a boundary to the militaristic weaponry that a civilian should be able to possess. I have to agree that this is an excellent question to ask. When exercising our rights, it is important to understand the social responsibility that must be exercised. I, and most firearms enthusiasts, concede that it would be troublesome for the citizenry to possess weapons of mass destruction. Where is the line? Libertarian principles dictate that no law should preempt freedom so long as the exercise of that freedom does not interfere with the rights of a third-party. Block and Block (2000) developed a theory based on geography and spatial relationships. They describe a constant where, as long as the weapon can be used defensively and the effect of the weapon can be isolated to the user and the target, the spatial relationship must fall between two extremes: (a) proportionally using the entire universe and (b) proportionally in a crowded phone booth. These are obviously not realistic situations, but the theory must transcend the boundaries of reality in order to prove all-encompassing. In the case that a population is spread over the entire universe, it would be acceptable for each person to have nuclear weapons for defensive use. On the other hand, in the latter scenario, perhaps only a small knife would be acceptable. To draw this theory back into the realm of reality, consider the spatial population differences between a highly populated city where a handgun would be acceptable, but a high-powered rifle may not be safe. Also, consider the population density of the many rural areas in the United States. In these areas, it might be plausible to own and use a tank, bazooka, and machine gun without fear of infringing on the rights of some third-party. This theory creates a direct relationship with the destructive power of the weapon and the likelihood of impacting an innocent person. Perhaps, this is the commonsense gun control that the gun control advocates are searching for. It appears that gun control advocates would like to remove the rights of the people instead of holding the individual responsible for committing crimes. As I believe, the right is certainly an individual right, and the responsibilities are also individual responsibilities. Using this theory as the predominant philosophy of responsible gun ownership would limit the need of any further legislation, as we already have laws enacted which seek to protect the public from endangerment; punishing the criminal, not the victim.

Is this theory realistic? What are the chances of its actually being considered? Ultimately, what is at stake here is the continuation of our government as we know it. Our founding fathers developed the U.S. Constitution in such a specific way as to protect ourselves from ourselves. Politicians with Socialistic views, though motivated with good intentions, could certainly lay a legislative foundation enabling future politicians to create a totalitarian regime, controlling the populace in the future with no fear of a reprisal by an armed citizenry (Savelsberg, 2002). We must keep this possibility in the front of our minds as we discuss and debate the focus and depth of the Second Amendment. Admittedly, there is a public safety component to the debate (Winkler, 2007, p. 727). On the one hand, it appears that large urban areas are fraught with gun violence. On the other hand, as Rand’s (1994) report shows, handguns are used in 17% of violent crimes in the U.S., and defending one’s self with a firearm reduces the likelihood of victim injury by more than 40%. Rand continues to show that guns are used in defense against violent crimes over 60,000 times annually. Firearm ownership is an absolute fiber in the fabric of American society, for the defense of self, State, and Country. We should approach this topic with care and knowledge. Although firearm issues may seem of concern to only a small group of Americans, it should, in fact, concern anyone who cares about the Constitution of the United States and the American way of life.


Aultice, P. L. (1990). United States vs Miller Court Opinion and Documents. Retrieved from

Block, W. & Block, M. (2000, October). Toward a universal libertarian theory of gun (weapon) control: a spatial and geographical analysis. Ethics, Place & Environment, 3(3), 289-298.

The Brady Campaign to Prevent Gun Violence. (n.d.). Military-style assault weapons. Retrieved from

District of Columbia v. Heller, 554 U.S. 290 (2007).

Elliott, J. (1836). The debates in the several State Conventions on the adoption of the Federal Constitution: June 14, 1788. Elliot’s Debates, 3, 365-410. Retrieved from

Firearms (Amendment) Act 1997, c. 5 et seq. (1997).

Ford, P. L. (1888). An examination into the leading principles of the Federal Constitution proposed by the late Convention held at Philadelphia. With answers to the principal objections that have been raised against the system. By a citizen of America. Pamphlets on the Constitution of the United States, published during its discussion by the people, 1787-1788, 25-65. Brooklyn, NY. Retrieved from (n.d.). Shotguns. Retrieved from /systems/ground/shotgun.htm

Johnston, P. (2007, February 6). Britain tops European crime league. The Telegraph. Retrieved from

Home Office, Research, Development, and Statistics Directorate. (2004, October 24). International comparisons of criminal justice statistics 2001. Retrieved from

Miller v. Texas, 153 U.S. 535 (1894).

Rand, M. R. (1994, April). Bureau of Justice Statistics crime data brief: Guns and crime: Handgun victimization, firearm self-defense, and firearm theft (NCJ-147003 Rev. 2002, September 24). U.S. Department of Justice: Office of Justice Programs, Bureau of Justice Statistics. Retrieved from

Savelsberg, J. J. (2002). Socialist Legal Traditions. Encyclopedia of Crime and Punishment. Retrieved from

United States v. Cruikshank, 92 U.S. 542 (1876).

United States v. Miller, 307 U.S. 174 (1939).

Winkler, A. (2007, February). Scrutinizing the Second Amendment. Michigan Law Review, 105(4), 683-733. Retrieved from

 Arguing With Einstein: It’s All Relative

In choosing a contemporary scientific controversy, I wanted to use certain selection criteria. Herstein (2009) outlines six “quick and dirty rules… for separating real from faux controversies” (para. 6). First, the controversy must involve alternatives that are scientifically valid. This rule keeps non-scientific claims and beliefs, such as religious views, from consideration. Second, the controversy must take place among peer-reviewed researchers. Though the media is useful in publicizing important findings, it is important that the controversy does not reside wholly in the realm of the media. This would, indeed, seem to invalidate some of the claims. Finally, combining two of Herstein’s rules, there should not be any significant financial motivations or overt conspiracy theories surrounding the controversy which would serve only to confuse the issue. For this paper, it would be difficult to sort through financial records of every person who has a potential interest in one of the alternatives. This position would lend to dismissing the controversies of certain industries, such as pharmaceuticals, energy, and national defense. Herstein has offered a contemporary scientific controversy which I will investigate for my final project.

From Copernicus to Galileo, then in 1686, Sir Isaac Newton developed his theory of universal gravitation. In 1905, Albert Einstein developed his relativity theories, improving on the Newtonian theory. These and other discoveries and theories have led to the conscript of the Standard Model of cosmology. As late as this year, research (Sagi, 2009) has been published which may build on these theories even further. This is not a popular venture among scientists. One observation is unfortunate:

Supporters of the big bang theory may retort that these theories do not explain every cosmological observation. But that is scarcely surprising, as their development has been severely hampered by a complete lack of funding. Indeed, such questions and alternatives cannot even now be freely discussed and examined. An open exchange of ideas is lacking in most mainstream conferences. Whereas Richard Feynman could say that “science is the culture of doubt”, in cosmology today doubt and dissent are not tolerated, and young scientists learn to remain silent if they have something negative to say about the standard big bang model. Those who doubt the big bang fear that saying so will cost them their funding. (Alternative Cosmology Group, 2004, para. 5)

If scientists fear ridicule and professional isolation for experimenting with potential alternatives to the Standard Model, this certainly constitutes a scientific controversy worth exploring. Further, adherence to a model that is not as complete as possible serves to discredit science in the view of the society. Science needs to be truthful to society. The social responsibility of science dictates the ethical approach to the dissemination of information to the public to educate and proffer wisdom, not to mislead and misinform; otherwise, the dark energy Einstein seeks can be found among his profession, keeping his equations true.


Alternative Cosmology Group. (2004, May 22). Open Letter on Cosmology. Retrieved from

Herstein, G. (2009, July 23). What does a real scientific controversy look like? [Web log message]. Retrieved from what_does_real_scientific_controversy_look

Sagi, E. (2009, August 15). Preferred frame parameters in the tensor-vector-scalar theory of gravity and its generalization. Physical Review D, 80(4), 44032-44047. doi:10.1103/PhysRevD.80.044032

 Social Responsibility in Science

The context of science seems to be challenged by public opinion and alternatives offered by pseudo-science. Though it is important to understand how public opinion is swayed, it is even more detrimental to recognize responsibility in garnering that opinion. One of the mainstays in science is to confirm findings before releasing the information to the public. In past, this has been done through private communications within the scientific community with the goal of garnering professional support of the findings. Peer dissonance is often communicated through further research disproving claims and theories, but peers are sometimes forced to publicly question these claims when the initial investigators have already publicized their initial findings.

The premature promotion of radical ideas only serves to excite the public. As Beckwith and Huang (2005) describe, “Although the scientists with an interest in influencing social policy often go public because of their strong belief in the conclusions… scientists who see the flaws… are much less likely to confront the issues in [public]” (p. 1479). This is a common tactic among pseudo-scientists, as those who lack credibility with their peers need to have public opinion in their favor, lest their finances dissipate. Beckwith and Huang go on to show that many scientists prefer to enjoy a public disconnect unless it furthers an agenda.

In 1945, Nagasake and Hiroshima burned as the world looked on in both amazement and disbelief. Since World War II, the demand in the United States for more social responsibility among the scientific community has grown. “The explosions over Hiroshima and Nagasaki… not only made society more aware of the importance of science, they made scientists more aware of their responsibility to society” (Badash, 2005, p. 148). Knowledge comes with responsibility, and though this responsibility is often cited when problems arise, it should be conveyed throughout the scientific process.

“It would be inappropriate to refrain from doing research in case it might possibly be abused or be applied irresponsibly” (Drenth, 1999, p. 237). Science needs to move forward. The purpose of science is to uncover knowledge in areas yet unexplored and unexplained. It is only reasonable to assume that science will uncover information that could be used in a manner contradictory to the original intent; otherwise, all research would be stymied if any of the possible outcomes could be used with maligned intent. Investigators should challenge themselves to remain unbiased, ethical, and honest throughout every phase of research, including the release of the conclusions, and they should take care not to assume further responsibility than is thrust upon them.

All schools of science should promote ethical and responsible research. As it is difficult to understand the potential impact of science in the future, investigators should attempt to minimize the negative impacts through careful design of their studies. Politicizing research should be left to politicians who have been thoroughly educated by the researchers.


Badash, L. (2005). American Physicists, Nuclear Weapons in World War II, and Social Responsibility. Physics in Perspective, 7, 138-149. doi:10.1007/s00016-003-0215-6

Beckwith, J., & Huang, F. (2005). Should we make a fuss: A case for social responsibility in science. Nature Biotechnology, 23(12), 1479-1480.

Drenth, P. J. D. (1999). Prometheus chained: Social and ethical constraints on Psychology. European Psychologist, 4(4), 233-239.


Many times, throughout the history of science, pseudosciences have been found to have some underlying correlation. Further directed study turns what was one pseudoscience into real science. An example of this is aspirin.

The basic form of aspirin, salicin, “was used for centuries earlier [than 460 B.C.] in European folk medicine” (Gibson, n.d., para. 2) in the form of willow leaves and bark to treat pain and swelling. This practice continued over the centuries until:

“According to “From A Miracle Drug” written by Sophie Jourdier for the Royal Society of Chemistry: ‘It was not long before the active ingredient in willow bark was isolated; in 1828, Johann Buchner, professor of pharmacy at the University of Munich, isolated a tiny amount of bitter tasting yellow, needle-like crystals, which he called salicin.'” (“History of Aspirin”, n.d., para. 4)

For the next 75 years, proto-aspirin was developed into what is now commonly referred to as aspirin (acetylsalicilic acid), and though aspirin is commonly prescribed for all sorts of pain, there is no medical research done at this time to show that aspirin has any more impact other than reducing pain. Not until 1988 was there much research showing the benefits of aspirin to treat heart attack victims (Fuster, Dyken, Vokonas, & Hennekens, 1993; Mosca, 2008), though it was commonly prescribed for reducing the associated pain. It is now generally understood in the medical community that aspirin serves a vital purpose in limiting prostiglandin production, thereby limiting the effect of clotting in the coronary arteries (Fuster et al., 1993). Essentially, aspirin helps to stop a heart attack from getting worse.

Aspirin has undergone a transformation from the pseudoscience of folk medicine to a valued addition in the general pharmacopeia for the treatment of heart attacks. Consider the difference between aspirin for heart health and the claims of acai berry for weight loss. There has been recent discussion about the health effects of acai berry which has prompted researchers to analyze the nutritional composition of the berry (Schauss et al., 2006). Though the discussion has nothing related to weight loss, some have made the claim that acai is useful for this purpose and cite research that does not further this claim. This is detrimental to the furtherance of acai as a significant source of nutrition and possible medicinal role for improving age-related cognition deficits (Willis, Shukitt-Hale, Joseph, 2009).


Fuster, V., Dyken, M. L., Vokonas, P. S., & Hennekens, C. (1993). Aspirin as a therapeutic agent in cardiovascular disease. Special Writing Group. Circulation, 87, 659-675.

Gibson, A. C. (n.d.). Oh willow, don’t weep. Economic Botany. Retrieved from

Mosca, L. (2008). Aspirin chemoprevention: One size does not fit all. Circulation, 117, 2844-2846.

History of Aspirin. (n.d.). About.Com: Inventors. Retrieved from

Schauss, A. G., Wu, X., Prior, R. L., Ou, B., Patel, D., Huang, D., & Kababick, J. P. (2006). Phytochemical and nutrient composition of the freeze-dried Amazonian palm berry, Euterpe oleraceae Mart. (acai). J. Agric. Food Chem., 54, 8598−8603

Willis, L. M., Shukitt-Hale, B., Joseph, J. A. (2009). Recent advances in berry supplementation and age-related cognitive decline. [Special commentary][Abstract]. Current Opinion in Clinical Nutrition & Metabolic Care, 12(1), 91-94. Abstract retrieved from

 It’s Alive! It’s Alive!:

The Problematic Stereotype of Scientists as Mad Doctors, Evil Geniuses, and Crazy Professors

Pryor and Bright (2006) describe occupational stereotyping as a result of the thought processes of efficient memorization using “induction, deduction, and abduction” ( 2). Further oversimplification and ignorant bias can lead to a dogmatic misrepresentation, which can further lead to a prejudiced view of the subject. Pryor and Bright refer to racism as a negative example of stereotyping; however, they continue that “stereotyping represents a summary of our experience of reality, as a form of knowledge, it also has a positive dimension” ( 3). As I read this description, I am reminded of the movie Back to the Future (Canton et al., 1985) in which, for me, Christopher Lloyd’s rendition of Dr. Emmett Brown embodies the stereotypical scientist. With his wild, unkempt white hair, absent-mindedness, and pure genius, “Doc Brown” provides a stereotypical characterization of the quirky and crazy professor. I have always held a realistic view of the world and do not readily subscribe to dogma, but I can see how portrayals of scientists such as the Doc Brown character can influence perceptions of the field. Though stereotypes such as these are not completely accurate portrayals of the occupation, they are not without base or merit.

Contributing factors of the occupational stereotype of scientists could possibly be from the public’s perceptions of science from the sensational coverage of the media of the time. When technology advances in light of the contributions of scientists, the technology usually gets the media coverage. Conversely, when the contributions are that of a seemingly quirky or sinister scientist, especially if the relevance of the technology is suspect, the media usually focuses on the scientist. Two particular cases demonstrate this phenomena particularly well. Sergei S. Brukhonenko (Konstantinov & Alexi-Meskishvili, 2000) was a major contributor to the medical advancement of temporal extracorporeal circulation, or heart-lung bypass, though the media chose to concentrate on the sensational image of a living decapitated dog head that was able to respond to stimuli and swallow food though separated from its body. The second example (Oddee, 2008) is the comprehensive effort of Luigi Galvani, Giovanni Aldini, J. Conrad Dippel, and Andrew Ure in exploring the relationship of electricity and nerve fibers, and though the experiments that each have performed were regarded as horrific parlor tricks or attempts at “playing god”, the importance of the resulting technology is not lost on cybernetic researchers responsible for improving the usefulness of prosthetic devices.

Stereotyping is a useful convention of society and a useful developmental tool to aid in learning and memorization, identification and warning, or for purely dramatic effect such as when cynically augmented for comedic relief. Though useful, care must be used when making associations of generalizations and bias. Unfortunately, the convention is frequently misused leading to an association of negative traits to unrealistic markers such as skin color, heritage, age, and gender. Additionally, the public perception of science is important when considering issues such as financial matters. Funding can be extremely difficult to secure if a project is ridiculed or rejected in the public forum. This difficulty can lead to dampening of research and a slowing of technological growth. Further, “these (social) images of occupations have a major impact on the development of occupational aspirations” (Pryor & Bright, 2006, 18). This identity bias could lead a bright potential scientist away from the occupational field of science. The implications can never be known.


Canton, N. (Producer), Gale, B. (Producer/Writer), Kennedy, K. (Executive Producer), Marshall, F. (Executive Producer), Spielberg, S. (Executive Producer), & Zemeckis, R. (Writer/Director). (1985). Back to the Future [Motion Picture]. United States: Universal Pictures.

Konstantinov, I.E., & Alexi-Meskishvili, V. V. (2000). Sergei S. Brukhonenko: the development of the first heart-lung machine for total body perfusion. Annals of Thoracic Surgery, 69(3), 962-966.

Oddee. (2008, October 13). Top 10 mad scientists in history. Retrieved from

Pryor, R. G. L., & Bright, J. E. H. (2006). Occupational Stereotypes. Encyclopedia of Career Development. Retrieved from

Weird Science:

The Study of Unconventional Topics

Unconventional science, or fringe science, is the study of science which goes against accepted theory and, arguably, should be viewed with skepticism to ensure the lack of pseudo-science (de Jager, 1990, pp. 35-36). Research in fringe science has undoubtedly provided the greatest technological jumps that society has benefited from. Human flight, magnetic levitation, the microprocessor, and electricity were all considered fringe science, even pseudo-science, at one time. Now, they are commonly accepted. Some of today’s fringe science topics involve teleportation, time travel, free energy, cold fusion, artificial intelligence, and cloaking.

For a scientist, a whole career can be jeopardized by choosing a field of study that is looked upon with disdain by the contemporary scientific community. A scientist must truly be passionate about their work in order to survive through this. Only the lucky few will ever see their work produce meaningful results. It is for this reason that it is important to distinguish fringe science from pseudo-science. Is it possible? Only after the emergence and acceptance of the theory, can it move from fringe science to contemporary science. Failing this, it will be forever regarded as pseudo-science by its detractors. So, why would any scientist want to spend an entire career in this realm, possibly alienating themselves from their peers? Passion. With that answer, I must ask myself if there is anything in the realm of fringe science that I would be so passionate about as a scientist that I would risk a career over it.

The medical uses of nanotechnology could have a considerable impact on the whole of the human race. To imagine, as Merkle (1996) describes, microscopic robots that could enter the bloodstream and travel throughout a body in search of injury or illness, then literally fix the problem is certainly Orwellian in my eyes. Notwithstanding, a breakthrough of this magnitude would certainly be worthwhile to any scientist, the application of which would be endless and only contingent on the robot’s ability to be programmed. There would be other uses, also: automatic repairs on buildings, bridges, and vehicles, the literal programmatic building of structures, instant recycling of waste materials, etc. Though, anything that could be helpful could also be a hindrance. A group of microscopic robots that could make repairs on human tissue could also destroy it. This would be a significant military advantage in the area of remote warfare, as well as more diabolical applications. As the size of the microprocessor inversely relates to the computing power, I can imagine that the intelligence capability required of these little machines is not too far in the future.

Science fiction! Even the airplane was science fiction at one time. The helicopter, too, though I still consider the helicopter to be an abomination of physics. Almost every contemporary scientific notion was once held to skepticism. I do not think that it is wise to dismiss an idea solely on the grounds of popularity or a lack thereof. If someone has a belief, let them prove it. Once proven, let the data be duplicated by others and turned into conventional wisdom or into the trash bin, wherever it belongs.


de Jager, C. (1990). Science, fringe science, and pseudo-science. R.A.S. Quarterly Journal, 31(1), 31-45.

Merkle, R. C. (1996). Nanotechnology and medicine. Advances in Anti-aging Medicine, 1, 277-286.

An Essay on the Value of Television on Society

Television plays a critical role in providing information to its viewers in a timely manner, though this responsibility could be detrimental if the format of delivery is not in line with the needs of the viewers. There are many questions and theories regarding the usefulness or appropriateness of television in American society today. A research review (Huston, et al., 1992) of television watching habits in regards to violence, sexuality and health shows that television program choices are as formative for adults as they are adolescents, though younger children may be spared from this effect due to their “insufficient emotional and cognitive capacities to comprehend the message.” With this in mind, some people feel that television broadcasts should be well-regulated and censored to a level that society finds appropriate (Hoffner, et al., 1999), and though much of television is, in fact, regulated to some degree, Anderson (1997) found that commercials which air during family-centered broadcasting contained violence which may not be suitable for all ages. In addition to violence, many programs aired today contain sociopolitical biases that threaten the very message meant to be conveyed. In addition to content, expertise is called into question as local and national news outlets are viewed with a sense of authority, when in fact they may not be. A recent survey (Wilson, 2008) of weathercasters showed that in 2002 only 8% of stations employed a science or environment reporter. Many weathercasters do not have the scientific background in order to accurately forecast severe weather, yet they serve as the authoritative source for this information. These are not symptoms common only to network television broadcasting but are prominent in all media, including print and radio.

In order for the media to maintain its credibility, it must take the responsibility of broadcasting seriously. Television broadcasters must maintain an air of unbiased, expert reporting interested in delivering fact and opposing viewpoints if necessary. Broadcast outlets must also take on the responsibility of the content of each program keeping in mind the intended audience. There is a social contract between viewers and broadcasters, and though I am not one to suggest government censorship, responsible self-censorship by each media outlet may be ethical and appropriate to promote good habits and healthy lifestyles.

With society’s reliance on television to provide entertainment and information, the programs and information offered can certainly alter society’s perceptions of acceptability and necessity within our culture. With rights comes responsibility. We enjoy a certain freedom of our press, but when that freedom is without responsibility, misinformation is promulgated to the masses having dire consequences on society. As an example, the media’s reliance on violence for profits has greatly diminished our society’s abhorrence of such. This coupled with poor and inaccurate reporting on gun violence has led to an unhealthy promotion of guns to solve the most minuscule of problems (Omaar, 2007). Essentially, the media created a self-fulfilling prophecy. Looking at society today, this has effectively removed guns from the hands of lawful citizens and placed them with criminals. Many politicians are to blame for their ignorance on this matter, but television is to blame for providing these politicians the education of ignorance. Television can shape society. What shape do we want to be in?


Anderson, C. (1997). Violence in Television Commercials During Nonviolent Programming: The 1996 Major League Baseball Playoffs. JAMA, 278(13), 1045-1046.

Hoffner, C., Buchanan, M., Anderson, J. D., Hubbs, L. A., Kamigaki, S. K., Kowalczyk, L., et al. (1999). Support for censorship of television violence: The role of the third-person effect and news exposure. Communication Research, 26(6), 726-742. DOI: 10.1177/009365099026006004

Huston, A. C., Donnerstein, E., Fairchild, H., Feshbach, N. D., Katz, P.A., Murray, J. P., et al. (1992). The role of television in American society. Lincoln, NE: University of Nebraska Press.

Omaar, R. (3 September 2007). Why our children carry guns. New Statesman, 137(4860), 20. AN: 26417804

Wilson, K. (2008). Television weathercasters as station scientists. Bulletin of the American Meteorological Society, 89(12), 1926-1927

Science as a Social Construction

In order to understand the differences and similarities of social versus cultural construction and to apply this to the field of science, we should first investigate the terms and understand the definitions of each. At center, we have “science”. Merriam-Webster (2009) defines science as “knowledge or a system of knowledge covering general truths [which can be] tested” in specific manner. For ease of transition, I will keep it simply as “knowledge”. Next is construction. Construction is defined, in this context, as “the act or result of construing, interpreting, or explaining”. Thus far, we have an act of interpreting or explaining knowledge, but is this construed socially, culturally or both? Hall (1994) delineates social and cultural abstracts, “[Culture] is threaded through all social practices, and is the sum of their interrelationship.” (p. 523) More generally speaking, society builds culture. As interrelated as these terms are, one can only posit that if a construct is social, then it must also be cultural. The inverse should also hold true.

Science, in one form or another, has been around since mankind perfected the first thing that was perfected. I do not feel that it is important to know what it was that we first perfected, but that we eventually perfected some kind of act or skill and sought to learn more. This want for knowledge, I will say would be the birth of science. From this time forward, I would argue that science was deeply social and cultural. The welfare of societies depended on the science of the time. Until the Age of Enlightenment, it did not matter if the knowledge was fully understood. “Enlightenment thinkers placed a great premium on the discovery of truth through the observation of nature, rather than through the study of authoritative sources, such as Aristotle and the Bible” (“Age of Enlightenment,” 2009). This was a time that mysticism and magic were set aside for experimentation and the scientific method. It is my opinion that, after the Age of Enlightenment, science became less socially or culturally oriented, though the impact was no less dramatic. It is this separation of emotion, the suspension of belief, that drives a true search for scientific fact.


Age of Enlightenment. (2009). In Microsoft Encarta Online Encyclopedia. Retrieved September 10, 2009, from

Construction. (2009). In Merriam-Webster Online Dictionary. Retrieved September 10, 2009, from

Hall, S. (1994). Cultural studies: Two paradigms. In N. B. Dirks, G. Eley & S. B. Ortner (Eds.), Culture/power/history: a reader in contemporary social theory (pp. 520-538). Princeton, NJ: Princeton University Press.

Science. (2009). In Merriam-Webster Online Dictionary. Retrieved September 10, 2009, from