Comma-dy, Tragedy: Small Writing Improvements in Academia

Writers of academic research need to adhere to a standard of language to improve the readability of their content and ensure the readers’ understanding of the author’s intent. The importance cannot be understated. As some constructs may be useful in the writing of a novel or screenplay, the same constructs can be detracting in the professional and academic domains.

Through primary and secondary school, I have always been a creative writer, and I have always been confident in my creative writing skills. My academic writing skills, I found, are not as effective. Recently, I had to take a college-level course concentrating on scholarly writing. Two things bothered me: the 16 years it has been since high school and the 13 years that I have been relegated to writing medical reports with no hint of grammar in sight. Though I have written some technical documents during this time, academic writing has never been a focus. I will describe my challenges in style and grammar as it pertains to scholarly writing.

Grammatic Fanatic

Comma Chameleon

Readers of my previous works may find the comma to be quite an elusive device. I have always tried to use clauses that relate in both meaning and flow, and this had allowed me to make stylistic considerations in the use of the comma. Even now, after having this shortcoming identified, I find difficulty in full and proper use of the comma.

Aaron (2007) describes strict comma usage with clauses such as dates and time, insignificant or nonessential phrases, and lists of three or more items, but she admits that stylistic considerations can be made for readability, especially in the case of brief but equally important phrases. It is apparent that I have taken this as license to defer appropriate comma usage, but I now have the tools and motivation to pay close attention to the punctuation in my future writing. I do need to ensure that I do not overcompensate for this shortcoming by including unwarranted punctuation.

Colloquialism Speaks Volumes

Converse to my lack of comma usage, I have realized that I rely heavily on colloquial speech, perhaps, as a means of presenting a contemporary, pertinent, and assured demeanor. Though the use of colloquial speech can add flair to an otherwise lifeless discourse, continual use should be avoided. Standard American English is the accepted standard language used in academic writing, following standard conventions and vocabulary and allowing “distance between writer and reader” with an “authoritative and neutral” voice (Aaron, 2007, p. 73). The Publication Manual of the American Psychological Association (2010) addresses this by wholly restricting “expressions… which diffuse meaning” (p. 68).

More importantly, I have recognized the need to avoid anthropomorphisms and the use of the passive voice, specifically. Though these constructs are prolific in colloquial speech, their use can impact the readability of the work and can negatively influence the readers’ perceptions of the author.


Applying the writing skills that I have learned previously, I feel that I now have a fairly good understanding of the concepts in academic, scholarly writing. As I progress in my academic career, I will have frequent opportunities to improve my writing and explore more useful stylistic methods. I want to have a near-perfect use of the grammar before expanding my writings to more poignant subjects. Upon matriculation into a graduate program, my writing ability will prove pivotal to my success in academia. My writing skill must be of the same quality as my peers; therefore, my skills must improve as I proceed in my studies.


Aaron, J. E. (2007). The little, brown compact handbook (6th ed.). New York, NY: Pearson Education, Inc.

American Psychological Association. (2010). Publication manual of the American Psychological Association (6th ed.). Washington, DC: Author.

Growing Up Einstein:

 A Look at the Controversies Surrounding Gravity

Newton’s Universal Law of Gravity has been the impetus of many significant advances in physics. Similarly, Einstein’s theories of relativity enabled the creation of a school of science, cosmology, and maintains a symbiotic relationship with the study of quantum mechanics, though quantum gravity proves elusive (“Relativity and the quantum,” n.d.). Einstein’s General Relativity (GR) theory is the accepted standard for modeling gravity, today. Until recently, anyone refuting Einstein was sure to find his or her claim subject to acute skepticism, if not complete dismissal. In fact, controversial claims have been made, and until as late as 2004, one unfortunate observation was made:

Supporters of the big bang theory may retort that these theories do not explain every cosmological observation. But that is scarcely surprising, as their development has been severely hampered by a complete lack of funding. Indeed, such questions and alternatives cannot even now be freely discussed and examined. An open exchange of ideas is lacking in most mainstream conferences. Whereas Richard Feynman could say that “science is the culture of doubt”, in cosmology today doubt and dissent are not tolerated, and young scientists learn to remain silent if they have something negative to say about the standard big bang model. Those who doubt the big bang fear that saying so will cost them their funding. (Alternative Cosmology Group, 2004, para. 5)

Two variant theories have surfaced with promise of becoming accepted, or at least considered: Modified Newtonian Dynamics (MOND) and Tensor-Vector-Scalar (TeVeS). The question remains, will these theories be heard?


Isaac Newton first introduced the concept of gravity in 1686 in his work Principia. Expanding on the ballistics work of Galileo and using the Pythagorean theorem, Newton explained the known observations of the moon’s orbital path around the Earth (Fowler, 2008). This work “led Newton to his famous inverse square law: the force of gravitational attraction between two bodies decreases with increasing distance between them as the inverse of the square of that distance, so if the distance is doubled, the force is down by a factor of four” (“The Moon is Falling,” para. 9) and, hence, extrapolated to the creation of Newton’s Universal Law of Gravity.

Newton’s Universal Law of Gravity states that the force of gravity between two objects is equal to the product of the masses of the two objects divided by the square of the distance between the objects multiplied by the universal gravitational constant. This is a very simplistic explanation of gravity, and though it proves true when considering objects closely related, it fails to explain the observed effects of gravity at both extremely long and intimately short distances (Skordis, 2009 ; Stacey & Tuck, 1981).

Einstein’s work on space-time in the early 1900’s was at odds with the classical notion of gravity. He spent some time reconsidering this impact and devised his GR theory. GR, though expanding the Newtonian law of gravity with the concept of curvatures in space-time to predict the existence of gravitational waves, gravitational lensing, and black holes, according to Skordis (2009), is still lacking and fails to explain the observed distribution of matter throughout the universe. GR requires mathematical adjustment to remain valid in some circumstances, introducing obscure concepts, such as dark energy and dark matter. The combination of dark matter and dark energy is told to comprise more than 95% of all mass in the universe (Filippini, 2005). Yet, this matter has never been observed. This situation presented cosmologists with an opportunity to devise a more complete and elegant solution to explain the effects of gravity. The problem: acceptance.

The Controversy, Itself

“There are significant discrepancies between the visible masses of galaxies and clusters of galaxies and their masses as inferred from Newtonian dynamics” (Sagi & Bekenstein, 2008). Proponents of GR and Newtonian Dynamics present the existence of dark matter and dark energy to provide explanations for these discrepancies. Some researchers did not accept this as a viable solution to the missing mass problem. Instead, they struggled to find a better solution. As earlier researchers presented their work, they were met with arrogance and contempt (Alternative Cosmology Group, 2004). This attitude has dissuaded others from questioning the conventional theories, at least without a sound theory that could hold up to scrutiny.

Modified Newtonian Dynamics (MOND) was probably one of the first contemporary proposals to identify a respectable solution to the quandaries of GR. Though, as Bekenstein and Sanders (2005) describes, it answered the questions of perigalactic gas clouds and some galaxy clustering without the need for dark matter, it failed with its incompatibility to the laws of conservation. The aquadratic lagrangian (AQUAL) theory emerged from MOND to address these shortcomings, though it, too, was flawed as it was a nonrelativistic solution to the problem. Relativistic AQUAL (RAQUAL) was introduced soon after. Being a relativistic version of AQUAL, RAQUAL does not negate AQUAL, and therefore, stays true to the MONDian theory, also. RAQUAL is not without its problems, however, as “it permits superluminal propagation of φ waves (B&M). And it is unable to give an account of gravitational lensing in agreement with the basic observation that lensing by galaxy clusters is anomalously strong compared to what was to be expected in view of their galaxies and gas content” (p. 24). Another problem is that RAQUAL is not covariant and actually “weaken[s] gravitational lensing, rather than enhancing it as intended” (p. 24). The introduction of a constant vector field to the equation both provides a solution and suggests the approach of the Tensor-Vector-Scalar (TeVeS) covariant field theory.

TeVeS is actually a combination of MOND, Newtonian, and Einstein’s GR, with two metrics to interact with the fields in the theory. “Many aspects of TeVeS have been investigated extensively, proving the theory to be faring quite well in view of the huge challenges it was designed to meet” (Sagi, 2009). TeVeS may provide ground-breaking advances in cosmology, and perhaps, in quantum physics.

The controversy surrounding TeVeS and its sound consideration probably stems from the shortcomings of its precursors. This is not a respectable position. Looking through the history of science, rarely is there a major step forward without, first, smaller and error-laden advances. Any new theory that answers real observations should be given an opportunity to mature with greater study and more observational constraint.

Science and Society

This controversy has been raging for the better part of a century. Not until recently has there been a proposed solution that both agrees with GR and Newtonian Dynamics at the same time that it furthers the understanding of gravity where GR fails. Many of the major technological advances in the last century were a direct result of Einstein’s breakthrough contributions to Newtonian physics. One would think that more people would be paying attention, but the general media has not. Perhaps, many of the reporters feel this issue is outside of the realm and scope of their readership’s ability to understand, or maybe, the media just does not realize the import of such discoveries. Unfortunately (or, perhaps, fortunately), the discussion remains technical, equation-laden, and lackluster, helping to keep the influences of the ignorant out of the discussion. Regardless, the limited mainstream coverage limits the controversy to the experts of astrophysics and cosmology.

Society should certainly pay more attention to science; it would serve society well to be an active participant in contemporary scientific discourse. A strong social commitment to science is needed in order to progress responsibly, and though society can prove to be collectively ignorant, it is no marker of overall intelligence. Can society give back to science?

What is (Not) Science?

In a recent Time magazine article (Cray, 2006), Francis Collins, in a debate with Richard Dawkins, attempts to justify his rigor as a scientist with his spiritual beliefs as a Christian. Science is knowledge. Science is neither philosophy nor religion. In the quest for understanding, cosmology is seeking answers to the beginning and hints of the end of time, the self-stated realm of religion. As of this writing, quantum physicists are sifting through anti-matter to glimpse the elusive God particle.

Scientific breakthroughs, though insightful, do not provide testimony against the existence of a Creator, just as uncovering a religious artifact does not negate the latest scientific conclusion. While religion strives to provide an explanation of the beginning of mankind, science is willing to explore the physical boundaries that religion is said to transcend. It would do both camps well to isolate themselves from one another. Cosmology is fraught with opportunity to infringe on religion, especially in the study of gravity. The separation of virtue from knowledge, while allowing them to coexist, is paramount. As we increase our understanding of the macro- and microscopic world around us, especially in the fields of cosmology and quantum physics, the sciences need to maintain a focused and unbiased search for knowledge. This discretion, alone, will limit many of these controversies from arising.

A Changing of the Guard

It appears from the amount of emerging research that there is a renewed vigor among cosmologists to rectify the problems of GR. With the amount of research being submitted to scholarly journals, detractors can no longer deny the need to seriously examine the potential solutions. Additionally, perhaps, the pool of experts have changed, and the conventional mindset has changed with them. Regardless, it appears as though a dearth of research is being completed in the study of universal gravity, and the research is, now, being considered as valid.

This controversy illustrates the need for scientists and field experts to approach emerging solutions with an open mind, though remaining vigilant and skeptical. As a society, we cannot afford having a potential scientific breakthrough remain secreted by virtue of conventionalism, alone. Our knowledge is too important for us to fail in nurturing it.


Alternative Cosmology Group. (2004, May 22). Open letter on cosmology. Retrieved from

Bekenstein, J. D. & Sanders, R. H. (2005). A primer to relativistic MOND theory. In G. Mamon, F. Combes, C. Deffayet & B. Fort (Eds.), EAS Publications Series (Vol. 20, pp. 225-230). doi:10.1051/eas:2006075

Cray, D. (2006, November 5). God vs. science. Time. Retrieved from

Filippini, J. (2005, August). Why dark matter? Cosmology Group, University of California, Berkley. Retrieved from Why_Dark_Matter.html

Fowler, M. (2008, November 13). Isaac Newton. Physics Department, University of Virginia. Retrieved from

Relativity and the quantum. (n.d.). Einstein-Online. Retrieved from

Sagi, E. (2009, August 15). Preferred frame parameters in the tensor-vector-scalar theory of gravity and its generalization. Physical Review D, 80(4), 44032-44047. doi:10.1103/PhysRevD.80.044032

Sagi, E. & Bekenstein, J. D. (2008, February 1). Black holes in the TeVeS theory of gravity and their thermodynamics. Physical Review D, 77, 024010-024021. doi:10.1103/PhysRevD.77.024010

Skordis, C. (2009, March 21). The Tensor-Vector-Scalar theory and its cosmology. Class.Quant.Grav., 26, 143001-143044. doi:10.1088/0264-9381/26/14/143001

Stacey, F. D. & Tuck, G. J. (1981, July 16). Geophysical evidence for non-newtonian gravity. Nature, 292, 230-232. doi:10.1038/292230a0

 Examining Gravitational Claims Through Shermer

Michael Shermer (2002) outlines 25 fallacies of thought that can influence how investigators approach their research and interpret the outcomes. These fallacies can be used to help us to understand where the data ends and the human factor begins. With new claims challenging the scope and breadth of Einstein’s general and special theories of relativity, it would be appropriate to examine these claims with a couple of Shermer’s fallacies.

The furtherance of cosmology and astrophysics is heavily reliant on our understanding of gravity, as it plays an integral role in the movements of and relationships between celestial bodies. As of this writing, it is the revolutionary theories of Newton and Einstein that guide the sciences. Though these theories do well to explain gravity within our solar system, as technological growth enables us to study more of the cosmos, we find that the matter distribution throughout the universe becomes problematic to the accepted theory. This has been referred to as the “missing mass problem” (Skordis, 2009, p. 2). To answer this problem, researchers have adopted and tested gravitational theories which build on Newton’s and Einstein’s theories. Unfortunately for these researchers, the scientific community is skeptical about any claims aimed at possibly discrediting the long-held conventions of gravitational theory, especially in light of the scientific growth that has resulted over the years. This creates a scientific controversy which will eventually be settled by continuing to form and adapt theories and testing their mettle against the scrutiny of scientists (Herstein, 2009).

Claims need to be accepted as valid or significant before the scientific community will consider them as competitive with current science. Certainly, there is no time to argue against every claim made, so only those claims that have the characteristics of good science should be entertained. This is where Shermer’s fallacies can be of value. Shermer attempts to provide a tool with which to measure the inadequacies of research and researcher. With his fallacies of thought, he attempts to reveal the pseudo-science among the good science. Two of his fallacies are useful to measure the claims against Einstein.

“Theory influences observations” (Shermer, 2002, p. 46). This truism certainly impacts astronomical and cosmological research. The study of universal gravity is difficult because we observe the effects from Earth. It is impossible to directly study the gravity of planets and stars from here. We must form theories and use calculations to approximate and legitimize our observations. These calculations must, then, have predictive value. If not, the theory is not valid (or, has limitations). With the distance from our subjects, we are forced to speculate about the observations, limited by our understanding of the physics involved.

“Equipment constructs results” (Shermer, 2002, p. 47). This statement has probably never been more true. We are truly limited by our location, as mentioned previously, and rely on remote data collection when studying the universe. To add, we are studying effects throughout time. Given two separate sets of data collected at the same time, the actual events observed could have a difference in age of millions of years. The distances of the various bodies are directly proportional to the age of the observation. This creates unique issues that we have never had to face studying our own solar system, as the differences, locally, are only hours at most.

It is important for scientists to consider all of the viable options when reaching a consensus, but it is just as important that the scientific community does not become overburdened by a multitude of spurious claims resulting from flawed, misguided, and unfounded research. Shermer (2002) provides an apparatus to immediately identify suspect logic.


Herstein, G. (2009, July 23). What does a real scientific controversy look like? [Web log message]. Retrieved from what_does_real_scientific_controversy_look

Shermer, M. (2002). Why people believe weird things. New York: Henry Holt and Company.

Skordis, C. (2009, March 21). The Tensor-Vector-Scalar theory and its cosmology. Manuscript submitted for publication. Retrieved from

Examples of Pseudoscientific Claims on the Internet

The advent of the internet gives rise to the proliferation of information. At first glance, this is a great medium of our time. The unfortunate truth is that there is a less-than-desirable side to the internet. One of the main achievements of the internet is the ability of everyone to publish their own ideas or collections of others ideas on websites. Sometimes, these websites do not portray the truth of the matter. Using standards set forth by Shermer (2002), I will examine two websites, which make extraordinary claims, for clues to the validity of their claims, or lack thereof. Though, the websites mentioned herein were specifically chosen as pseudoscientific, I will search for the modicum of truth that is sure to be inherent in all claims of this nature.

Paul Ingraham, a registered massage therapist in Vancouver, Canada, claims that stretching prior to exercise is all but useless (n.d.). For $14.95, he will show you why. In his web-based article, formatted to appear as a peer-reviewed and published manuscript, Ingraham starts by citing an article in the same commercial magazine that pays him for submissions. Below this are two quotes from reader feedback. This is hardly scientific reference. The article moves on to cover the subject material in the authors words while continuing to cite “plentiful research” (para. 6), of which many conclude limited findings, and “evidence” (para. 7), which he immediately qualifies as “at least a really convincing physiological rationale” (para. 7).

Shermer’s (2002) fallacies can be used to identify this website as less credible than the author intends. Shermer’s first fallacy, “theory influences observation” (p. 46) is an obvious consideration. Ingraham is a massage therapist and his view is certainly biased by his occupation. A quick glance at the provided reference list will show a collection of literature selected to support Ingraham’s (n.d.) claim. Shermer’s fourth fallacy, “anecdotes do not make a science” (p. 48), can be applied as Ingraham uses anecdotes throughout his article to support his claim. Finally, the whole format of Ingraham’s self-published article, suggesting that his work was peer-reviewed and published in an academic journal, brings to light Shermer’s fifth fallacy, “scientific language does not make a science” (p. 49). With three of Shermer’s 25 fallacies shown to be pertinent considerations, Ingraham must be viewed with skepticism at the very least.

A website published by the Discovery Institute, Center for Science and Culture (n.d.), makes the claim that the year 2012 marks the end of the world, at least as we know it. This website uses strong language and bold statements throughout. This would certainly be an application of Shermer’s (2002) sixth fallacy, “bold statements do not make claims true” (p. 49). Additionally, this website uses references to religions and philosophies, tying them with coincidental occurrences throughout time as a means of justification for the claim. This alone creates skepticism using almost all of Shermer’s fallacies of thought.

Can stretching be detrimental to the athlete? Might there be better ways to prepare for strenuous activities? Certainly. It is unfortunate that this author does not take the time to do appropriate research. Further, it could be stated that his representation of the facts is fraudulent. Although he may have some standing in his claim, he does a disservice to himself by the methods he employs to make a convincing argument (Ingraham, n.d.).

The same cannot be said for the 2012 prophecies (Discovery Institute, Center for Science and Culture, n.d.). These prophecies lack proof until the prophecies are fulfilled. There are just no scientific means available to observe and study this prophecy as it has yet to occur, and though science may be able to explain whatever catastrophe might happen that day, the prophecy itself is beyond the realm of science.


Discovery Institute, Center for Science and Culture. (n.d.). Explaining the science of Intelligent Design. Retrieved from

Kehne, J. (2006). December 21 2012, The official Website for 122112 Information. Retrieved October 10, 2009, from

Shermer, M. (2002). Why people believe weird things. New York: Henry Holt and Company.

Ingraham, P. (n.d.). Stretching for trigger points. Retrieved from

Disregarding the Second Amendment

The Socio-political Consequences and a Libertarian Solution

Americans, as citizens of the republic, have rights that transcend any government. These rights ensure the continuing operation and stability of the republic. Our founding fathers outlined these rights conspicuously after thoughtfully debating the specific wording that should be used. Though times change, these freedoms should not. Most Americans accept that with these freedoms come social responsibility, and I will delineate how this relationship can be maintained without the use of specific anti-gun legislation. The current opinions surrounding gun control range from desires to ban all privately owned firearms to disallowing any government (Federal, State, County, or municipal) from placing any controls on the citizens’ ability to own, possess, carry, control, and use firearms. On the other hand, some people are willing to accept a compromise of terms. There are socio-political consequences for each of the various levels of proposed gun control in the United States, including impacts on the U.S. Constitution and the Constitutions of the fifty States.

The anti-gun coalitions dispute the claims that crime rates soar when gun bans are put in effect, and admittedly, the correlation does nothing to prove causation, yet, a sober analysis of the matter reveals confirmation that the claim is, in fact, valid. Following the 1997 gun ban (Firearms Act, 1997), Great Britain suffered the highest crime rates in Europe, specifically domestic burglary, the forceful entering of residential premises. A Home Office report shows that violent crimes increased steadily by 26% over the next 5 years (2004). Johnston reports, “Britain has one of the worst crime rates in Europe…. It is the most burgled country in Europe, has the highest level of assaults and above average rates of car theft, robbery and pickpocketing” (2007, para. 1). In fact, the violent crime rate continues to grow 77% through 2006. Japanese crime rates increase dramatically 128% during the years 1997 to 2001, after adopting similar firearms legislation. The same phenomena was seen in Australia with robberies increasing 44% after a similar gun ban. Interestingly, the authorities in New Zealand found it difficult and cumbersome to enforce the Australian ban and they abandoned the effort. The crime rates in New Zealand decreased dramatically (robbery: 18% decrease, domestic burglary: 27% decrease). Unfortunately, after a rejuvenation of the gun ban in 2000, the report reflects an 8% overall increase in violent crimes (Home Office, 2004). Unfortunately, the research is still lacking.

Another component of the gun control debate in the United States is the consideration that the Second Amendment of the U.S. Constitution refers not to individuals, but to State and Federal sponsored militias. Though the U.S. Supreme Court (District of Columbia v. Heller, 2007) has recently ruled that the Amendment proscribes an individual right, this is not a new opinion. A search through documentation of the Constitutional Conventions (Elliot, 1836; Ford, 1888) and previous Supreme Court decisions (United States v. Cruikshank, 1876; United States v. Miller, 1939) shows a consistent viewpoint, the Second Amendment refers to an individual right to bear arms. There certainly has been some confusion regarding the interpretation of this Amendment (Miller v. Texas, 1894; United States v. Cruikshank, 1876), but most of the experts now concede the individual rights interpretation.

Proponents of gun control have also sought to ban weapons described as assault weapons. The position of The Brady Campaign to Prevent Gun Violence ( on assault weapons:

The Brady Campaign supports banning military-style semi-automatic assault weapons along with high-capacity ammunition magazines. These dangerous weapons have no sporting or civilian use. Their combat features are appropriate to military, not civilian, contexts. (n.d., Position section)

Here many gun control advocates erroneously cite United States v. Miller (1939) as limiting the civilian ownership of military-style weapons. Justice McReynolds, in his opinion, states, “Certainly it is not within judicial notice that this weapon is any part of the ordinary military equipment, or that its use could contribute to the common defense” (p. 6). This ruling is problematic. Miller and his co-defendant were not represented by counsel, and before the proceedings took place, Miller was murdered (Aultice, 1990). With these issues in mind, the opinion was based on a lack of evidence that a sawed-off shotgun could be used as ordinary military equipment. An argument could have been made that might have impacted Justice McReynolds’ opinion. During the Civil War, Confederate cavalrymen regularly employed the sawed-off shotgun against the Union cavalry, and during World War I, American soldiers in Europe used short-barreled shotguns regularly to clear trenches (, n.d.). Had this argument been offered, perhaps the opinion would have been different. As Aultice (1990) writes, “by default it is acceptable to own weapons with a ‘reasonable relationship’ to the preservation of the militia, and nothing so fits the description as those creatures of their own distorted imagination, the so-called ‘assault weapons’!” (Viewpoint section, para. 1). During debates, the proponents of gun control find themselves requiring a different argument in the face of this.

Gun control advocates ask a fairly simple, though outlandish, question: Where does it end? The gun control advocates are simply asking if there is a boundary to the militaristic weaponry that a civilian should be able to possess. I have to agree that this is an excellent question to ask. When exercising our rights, it is important to understand the social responsibility that must be exercised. I, and most firearms enthusiasts, concede that it would be troublesome for the citizenry to possess weapons of mass destruction. Where is the line? Libertarian principles dictate that no law should preempt freedom so long as the exercise of that freedom does not interfere with the rights of a third-party. Block and Block (2000) developed a theory based on geography and spatial relationships. They describe a constant where, as long as the weapon can be used defensively and the effect of the weapon can be isolated to the user and the target, the spatial relationship must fall between two extremes: (a) proportionally using the entire universe and (b) proportionally in a crowded phone booth. These are obviously not realistic situations, but the theory must transcend the boundaries of reality in order to prove all-encompassing. In the case that a population is spread over the entire universe, it would be acceptable for each person to have nuclear weapons for defensive use. On the other hand, in the latter scenario, perhaps only a small knife would be acceptable. To draw this theory back into the realm of reality, consider the spatial population differences between a highly populated city where a handgun would be acceptable, but a high-powered rifle may not be safe. Also, consider the population density of the many rural areas in the United States. In these areas, it might be plausible to own and use a tank, bazooka, and machine gun without fear of infringing on the rights of some third-party. This theory creates a direct relationship with the destructive power of the weapon and the likelihood of impacting an innocent person. Perhaps, this is the commonsense gun control that the gun control advocates are searching for. It appears that gun control advocates would like to remove the rights of the people instead of holding the individual responsible for committing crimes. As I believe, the right is certainly an individual right, and the responsibilities are also individual responsibilities. Using this theory as the predominant philosophy of responsible gun ownership would limit the need of any further legislation, as we already have laws enacted which seek to protect the public from endangerment; punishing the criminal, not the victim.

Is this theory realistic? What are the chances of its actually being considered? Ultimately, what is at stake here is the continuation of our government as we know it. Our founding fathers developed the U.S. Constitution in such a specific way as to protect ourselves from ourselves. Politicians with Socialistic views, though motivated with good intentions, could certainly lay a legislative foundation enabling future politicians to create a totalitarian regime, controlling the populace in the future with no fear of a reprisal by an armed citizenry (Savelsberg, 2002). We must keep this possibility in the front of our minds as we discuss and debate the focus and depth of the Second Amendment. Admittedly, there is a public safety component to the debate (Winkler, 2007, p. 727). On the one hand, it appears that large urban areas are fraught with gun violence. On the other hand, as Rand’s (1994) report shows, handguns are used in 17% of violent crimes in the U.S., and defending one’s self with a firearm reduces the likelihood of victim injury by more than 40%. Rand continues to show that guns are used in defense against violent crimes over 60,000 times annually. Firearm ownership is an absolute fiber in the fabric of American society, for the defense of self, State, and Country. We should approach this topic with care and knowledge. Although firearm issues may seem of concern to only a small group of Americans, it should, in fact, concern anyone who cares about the Constitution of the United States and the American way of life.


Aultice, P. L. (1990). United States vs Miller Court Opinion and Documents. Retrieved from

Block, W. & Block, M. (2000, October). Toward a universal libertarian theory of gun (weapon) control: a spatial and geographical analysis. Ethics, Place & Environment, 3(3), 289-298.

The Brady Campaign to Prevent Gun Violence. (n.d.). Military-style assault weapons. Retrieved from

District of Columbia v. Heller, 554 U.S. 290 (2007).

Elliott, J. (1836). The debates in the several State Conventions on the adoption of the Federal Constitution: June 14, 1788. Elliot’s Debates, 3, 365-410. Retrieved from

Firearms (Amendment) Act 1997, c. 5 et seq. (1997).

Ford, P. L. (1888). An examination into the leading principles of the Federal Constitution proposed by the late Convention held at Philadelphia. With answers to the principal objections that have been raised against the system. By a citizen of America. Pamphlets on the Constitution of the United States, published during its discussion by the people, 1787-1788, 25-65. Brooklyn, NY. Retrieved from (n.d.). Shotguns. Retrieved from /systems/ground/shotgun.htm

Johnston, P. (2007, February 6). Britain tops European crime league. The Telegraph. Retrieved from

Home Office, Research, Development, and Statistics Directorate. (2004, October 24). International comparisons of criminal justice statistics 2001. Retrieved from

Miller v. Texas, 153 U.S. 535 (1894).

Rand, M. R. (1994, April). Bureau of Justice Statistics crime data brief: Guns and crime: Handgun victimization, firearm self-defense, and firearm theft (NCJ-147003 Rev. 2002, September 24). U.S. Department of Justice: Office of Justice Programs, Bureau of Justice Statistics. Retrieved from

Savelsberg, J. J. (2002). Socialist Legal Traditions. Encyclopedia of Crime and Punishment. Retrieved from

United States v. Cruikshank, 92 U.S. 542 (1876).

United States v. Miller, 307 U.S. 174 (1939).

Winkler, A. (2007, February). Scrutinizing the Second Amendment. Michigan Law Review, 105(4), 683-733. Retrieved from

 Arguing With Einstein: It’s All Relative

In choosing a contemporary scientific controversy, I wanted to use certain selection criteria. Herstein (2009) outlines six “quick and dirty rules… for separating real from faux controversies” (para. 6). First, the controversy must involve alternatives that are scientifically valid. This rule keeps non-scientific claims and beliefs, such as religious views, from consideration. Second, the controversy must take place among peer-reviewed researchers. Though the media is useful in publicizing important findings, it is important that the controversy does not reside wholly in the realm of the media. This would, indeed, seem to invalidate some of the claims. Finally, combining two of Herstein’s rules, there should not be any significant financial motivations or overt conspiracy theories surrounding the controversy which would serve only to confuse the issue. For this paper, it would be difficult to sort through financial records of every person who has a potential interest in one of the alternatives. This position would lend to dismissing the controversies of certain industries, such as pharmaceuticals, energy, and national defense. Herstein has offered a contemporary scientific controversy which I will investigate for my final project.

From Copernicus to Galileo, then in 1686, Sir Isaac Newton developed his theory of universal gravitation. In 1905, Albert Einstein developed his relativity theories, improving on the Newtonian theory. These and other discoveries and theories have led to the conscript of the Standard Model of cosmology. As late as this year, research (Sagi, 2009) has been published which may build on these theories even further. This is not a popular venture among scientists. One observation is unfortunate:

Supporters of the big bang theory may retort that these theories do not explain every cosmological observation. But that is scarcely surprising, as their development has been severely hampered by a complete lack of funding. Indeed, such questions and alternatives cannot even now be freely discussed and examined. An open exchange of ideas is lacking in most mainstream conferences. Whereas Richard Feynman could say that “science is the culture of doubt”, in cosmology today doubt and dissent are not tolerated, and young scientists learn to remain silent if they have something negative to say about the standard big bang model. Those who doubt the big bang fear that saying so will cost them their funding. (Alternative Cosmology Group, 2004, para. 5)

If scientists fear ridicule and professional isolation for experimenting with potential alternatives to the Standard Model, this certainly constitutes a scientific controversy worth exploring. Further, adherence to a model that is not as complete as possible serves to discredit science in the view of the society. Science needs to be truthful to society. The social responsibility of science dictates the ethical approach to the dissemination of information to the public to educate and proffer wisdom, not to mislead and misinform; otherwise, the dark energy Einstein seeks can be found among his profession, keeping his equations true.


Alternative Cosmology Group. (2004, May 22). Open Letter on Cosmology. Retrieved from

Herstein, G. (2009, July 23). What does a real scientific controversy look like? [Web log message]. Retrieved from what_does_real_scientific_controversy_look

Sagi, E. (2009, August 15). Preferred frame parameters in the tensor-vector-scalar theory of gravity and its generalization. Physical Review D, 80(4), 44032-44047. doi:10.1103/PhysRevD.80.044032

 Social Responsibility in Science

The context of science seems to be challenged by public opinion and alternatives offered by pseudo-science. Though it is important to understand how public opinion is swayed, it is even more detrimental to recognize responsibility in garnering that opinion. One of the mainstays in science is to confirm findings before releasing the information to the public. In past, this has been done through private communications within the scientific community with the goal of garnering professional support of the findings. Peer dissonance is often communicated through further research disproving claims and theories, but peers are sometimes forced to publicly question these claims when the initial investigators have already publicized their initial findings.

The premature promotion of radical ideas only serves to excite the public. As Beckwith and Huang (2005) describe, “Although the scientists with an interest in influencing social policy often go public because of their strong belief in the conclusions… scientists who see the flaws… are much less likely to confront the issues in [public]” (p. 1479). This is a common tactic among pseudo-scientists, as those who lack credibility with their peers need to have public opinion in their favor, lest their finances dissipate. Beckwith and Huang go on to show that many scientists prefer to enjoy a public disconnect unless it furthers an agenda.

In 1945, Nagasake and Hiroshima burned as the world looked on in both amazement and disbelief. Since World War II, the demand in the United States for more social responsibility among the scientific community has grown. “The explosions over Hiroshima and Nagasaki… not only made society more aware of the importance of science, they made scientists more aware of their responsibility to society” (Badash, 2005, p. 148). Knowledge comes with responsibility, and though this responsibility is often cited when problems arise, it should be conveyed throughout the scientific process.

“It would be inappropriate to refrain from doing research in case it might possibly be abused or be applied irresponsibly” (Drenth, 1999, p. 237). Science needs to move forward. The purpose of science is to uncover knowledge in areas yet unexplored and unexplained. It is only reasonable to assume that science will uncover information that could be used in a manner contradictory to the original intent; otherwise, all research would be stymied if any of the possible outcomes could be used with maligned intent. Investigators should challenge themselves to remain unbiased, ethical, and honest throughout every phase of research, including the release of the conclusions, and they should take care not to assume further responsibility than is thrust upon them.

All schools of science should promote ethical and responsible research. As it is difficult to understand the potential impact of science in the future, investigators should attempt to minimize the negative impacts through careful design of their studies. Politicizing research should be left to politicians who have been thoroughly educated by the researchers.


Badash, L. (2005). American Physicists, Nuclear Weapons in World War II, and Social Responsibility. Physics in Perspective, 7, 138-149. doi:10.1007/s00016-003-0215-6

Beckwith, J., & Huang, F. (2005). Should we make a fuss: A case for social responsibility in science. Nature Biotechnology, 23(12), 1479-1480.

Drenth, P. J. D. (1999). Prometheus chained: Social and ethical constraints on Psychology. European Psychologist, 4(4), 233-239.


Many times, throughout the history of science, pseudosciences have been found to have some underlying correlation. Further directed study turns what was one pseudoscience into real science. An example of this is aspirin.

The basic form of aspirin, salicin, “was used for centuries earlier [than 460 B.C.] in European folk medicine” (Gibson, n.d., para. 2) in the form of willow leaves and bark to treat pain and swelling. This practice continued over the centuries until:

“According to “From A Miracle Drug” written by Sophie Jourdier for the Royal Society of Chemistry: ‘It was not long before the active ingredient in willow bark was isolated; in 1828, Johann Buchner, professor of pharmacy at the University of Munich, isolated a tiny amount of bitter tasting yellow, needle-like crystals, which he called salicin.'” (“History of Aspirin”, n.d., para. 4)

For the next 75 years, proto-aspirin was developed into what is now commonly referred to as aspirin (acetylsalicilic acid), and though aspirin is commonly prescribed for all sorts of pain, there is no medical research done at this time to show that aspirin has any more impact other than reducing pain. Not until 1988 was there much research showing the benefits of aspirin to treat heart attack victims (Fuster, Dyken, Vokonas, & Hennekens, 1993; Mosca, 2008), though it was commonly prescribed for reducing the associated pain. It is now generally understood in the medical community that aspirin serves a vital purpose in limiting prostiglandin production, thereby limiting the effect of clotting in the coronary arteries (Fuster et al., 1993). Essentially, aspirin helps to stop a heart attack from getting worse.

Aspirin has undergone a transformation from the pseudoscience of folk medicine to a valued addition in the general pharmacopeia for the treatment of heart attacks. Consider the difference between aspirin for heart health and the claims of acai berry for weight loss. There has been recent discussion about the health effects of acai berry which has prompted researchers to analyze the nutritional composition of the berry (Schauss et al., 2006). Though the discussion has nothing related to weight loss, some have made the claim that acai is useful for this purpose and cite research that does not further this claim. This is detrimental to the furtherance of acai as a significant source of nutrition and possible medicinal role for improving age-related cognition deficits (Willis, Shukitt-Hale, Joseph, 2009).


Fuster, V., Dyken, M. L., Vokonas, P. S., & Hennekens, C. (1993). Aspirin as a therapeutic agent in cardiovascular disease. Special Writing Group. Circulation, 87, 659-675.

Gibson, A. C. (n.d.). Oh willow, don’t weep. Economic Botany. Retrieved from

Mosca, L. (2008). Aspirin chemoprevention: One size does not fit all. Circulation, 117, 2844-2846.

History of Aspirin. (n.d.). About.Com: Inventors. Retrieved from

Schauss, A. G., Wu, X., Prior, R. L., Ou, B., Patel, D., Huang, D., & Kababick, J. P. (2006). Phytochemical and nutrient composition of the freeze-dried Amazonian palm berry, Euterpe oleraceae Mart. (acai). J. Agric. Food Chem., 54, 8598−8603

Willis, L. M., Shukitt-Hale, B., Joseph, J. A. (2009). Recent advances in berry supplementation and age-related cognitive decline. [Special commentary][Abstract]. Current Opinion in Clinical Nutrition & Metabolic Care, 12(1), 91-94. Abstract retrieved from